
Quantum LLL
with an Application to Mersenne Number Cryptosystems

Marcel Tiepelt1 Alan Szepieniec2

1Karlsruhe Institute of Technology
2Nervos Foundation

Latincrypt 2019
Santiago de Chile, Oct. 2-4

KIT – The Research University in the Helmholtz Association
www.kit.edu

http://www.kit.edu

Overview

Quantum circuit representation of LLL
for (textbook) rational numbers
for floating-point approximation

Resource estimates of (sub)circuits, in Toffoli-gates

Focus on qubits count

Marcel Tiepelt, Alan Szepieniec – Quantum LLL 2/1

Why quantum translation of LLL?

Consider LLL as a subroutine, e.g., SVP oracle in cryptanalysis
Assume 256 bits of classical security, for O(2256) expected
number of oracle calls

Quantumly: 128 bits of security, Groverization promises
improvement to O(2128)
→ Requires efficient translation of LLL into quantum setting!

But: translation of (text-book) LLL results in large overhead
w.r.t. the number of qubits!

Does Grover with a QLLL give us the desired improvement?

Marcel Tiepelt, Alan Szepieniec – Quantum LLL 3/1

Why quantum translation of LLL?

Consider LLL as a subroutine, e.g., SVP oracle in cryptanalysis
Assume 256 bits of classical security, for O(2256) expected
number of oracle calls

Quantumly: 128 bits of security, Groverization promises
improvement to O(2128)
→ Requires efficient translation of LLL into quantum setting!

But: translation of (text-book) LLL results in large overhead
w.r.t. the number of qubits!

Does Grover with a QLLL give us the desired improvement?

Marcel Tiepelt, Alan Szepieniec – Quantum LLL 3/1

Why quantum translation of LLL?

Consider LLL as a subroutine, e.g., SVP oracle in cryptanalysis
Assume 256 bits of classical security, for O(2256) expected
number of oracle calls

Quantumly: 128 bits of security, Groverization promises
improvement to O(2128)
→ Requires efficient translation of LLL into quantum setting!

But: translation of (text-book) LLL results in large overhead
w.r.t. the number of qubits!

Does Grover with a QLLL give us the desired improvement?

Marcel Tiepelt, Alan Szepieniec – Quantum LLL 3/1

Why quantum translation of LLL?

Consider LLL as a subroutine, e.g., SVP oracle in cryptanalysis
Assume 256 bits of classical security, for O(2256) expected
number of oracle calls

Quantumly: 128 bits of security, Groverization promises
improvement to O(2128)
→ Requires efficient translation of LLL into quantum setting!

But: translation of (text-book) LLL results in large overhead
w.r.t. the number of qubits!

Does Grover with a QLLL give us the desired improvement?

Marcel Tiepelt, Alan Szepieniec – Quantum LLL 3/1

(Classical) LLL

1: Input: Basis B = (b1, b2, ..., br)
2: Output: Reduced Basis B̂
3: B∗,M ← GSO(B)
4: k ← 2
5: while k ≤ r do
6: Size-reduce(bk , bk−1)
7: if Lovász condition holds on bk , bk−1 then
8: Size-reduce(bk , {bj}0≤j≤k−1), update M
9: k++

10: else
11: swap bk , bk−1, update M
12: k := max(2, k − 1)
13: end if
14: end while

Marcel Tiepelt, Alan Szepieniec – Quantum LLL 4/1

Variants

Rational M: Lenstra1982

Floating-point approximation M:
Schnorr:1988:MEA:48880.48883

“Best” variant: L2 10.1007/11426639˙13

(many more)

Marcel Tiepelt, Alan Szepieniec – Quantum LLL 5/1

Quantum LLL Setup

Registers
|B⟩ Basis representing a superposition of integer lattices

|M(i)⟩ transformation M in iteration i s.t.: B = MB∗

|K ⟩, |cntl⟩ counters, controls

Operations
Arithmetic in Q or R, vector operations in Z
misc compare, round, max(x , y), ...

Notations
function f (X)
uncompute (run circuit backwards) (f (X))−1

Marcel Tiepelt, Alan Szepieniec – Quantum LLL 6/1

Quantum LLL Setup

Registers
|B⟩ Basis representing a superposition of integer lattices

|M(i)⟩ transformation M in iteration i s.t.: B = MB∗

|K ⟩, |cntl⟩ counters, controls

Operations
Arithmetic in Q or R, vector operations in Z
misc compare, round, max(x , y), ...

Notations
function f (X)
uncompute (run circuit backwards) (f (X))−1

Marcel Tiepelt, Alan Szepieniec – Quantum LLL 6/1

Quantum LLL Setup

Registers
|B⟩ Basis representing a superposition of integer lattices

|M(i)⟩ transformation M in iteration i s.t.: B = MB∗

|K ⟩, |cntl⟩ counters, controls

Operations
Arithmetic in Q or R, vector operations in Z
misc compare, round, max(x , y), ...

Notations
function f (X)
uncompute (run circuit backwards) (f (X))−1

Marcel Tiepelt, Alan Szepieniec – Quantum LLL 6/1

Quantum LLL

|L⟩

|B⟩

|M⟩

|Lov⟩

|K ⟩

|ctl1⟩

|ctl2⟩

|J⟩

Q
G

SO

0
≤

|K
⟩

≤
r

siz
e-

re
du

ce
:

|b
K

⟩,
|b

K
−

1⟩

Lo
vá

sz

0
≥

|J
⟩

≤
|K

⟩−
2

br
an

ch
:

siz
e-

re
du

ce

(0
≥

|J
⟩

≤
|K

⟩−
2)

−
1 +

1

0
≥

|J
⟩

≤
|K

⟩−
2

br
an

ch
:

sw
ap

(0
≥

|J
⟩

≤
|K

⟩−
2)

−
1 max(2, |K⟩ − 1)

|L⟩

|B⟩

|M⟩

|Lov⟩

|K ⟩

|ctl1⟩

|ctl2⟩

|J⟩

bound(K) cycles

rank(L) cycles rank(L) cycles

Marcel Tiepelt, Alan Szepieniec – Quantum LLL 7/1

Quantum LLL

|L⟩

|B⟩

|M⟩

|Lov⟩

|K ⟩

|ctl1⟩

|ctl2⟩

|J⟩

Q
G

SO

0
≤

|K
⟩

≤
r

siz
e-

re
du

ce
:

|b
K

⟩,
|b

K
−

1⟩

Lo
vá

sz

0
≥

|J
⟩

≤
|K

⟩−
2

br
an

ch
:

siz
e-

re
du

ce

(0
≥

|J
⟩

≤
|K

⟩−
2)

−
1 +

1

0
≥

|J
⟩

≤
|K

⟩−
2

br
an

ch
:

sw
ap

(0
≥

|J
⟩

≤
|K

⟩−
2)

−
1 max(2, |K⟩ − 1)

|L⟩

|B⟩

|M⟩

|Lov⟩

|K ⟩

|ctl1⟩

|ctl2⟩

|J⟩

bound(K) cycles

rank(L) cycles rank(L) cycles

Marcel Tiepelt, Alan Szepieniec – Quantum LLL 8/1

Pitfall I: unbounded loops

Quantum
Apply as often as necessary,
but not too often

Classical
Apply operation until loop
terminates

Loop k := 2; while(k ≤ r);
|K ⟩

|cntl1⟩

|cntl2⟩

|ψ⟩

|K
⟩≥

2

|K
⟩≤

r

Apply Task

(|K
⟩≤

r)
−

1

(|K
⟩

≥
2)

−
1

±1 |K ⟩

|cntl1⟩

|cntl2⟩

|ψ⟩

bound(K) cycles

Quantum: worst-case running time for all (unbounded) loops

Marcel Tiepelt, Alan Szepieniec – Quantum LLL 9/1

Pitfall I: unbounded loops
Quantum

Apply as often as necessary,
but not too often

Classical
Apply operation until loop
terminates

Loop k := 2; while(k ≤ r);
|K ⟩

|cntl1⟩

|cntl2⟩

|ψ⟩

|K
⟩≥

2

|K
⟩≤

r

Apply Task

(|K
⟩≤

r)
−

1

(|K
⟩

≥
2)

−
1

±1 |K ⟩

|cntl1⟩

|cntl2⟩

|ψ⟩

bound(K) cycles

Quantum: worst-case running time for all (unbounded) loops

Marcel Tiepelt, Alan Szepieniec – Quantum LLL 9/1

Pitfall I: unbounded loops
Quantum

Apply as often as necessary,
but not too often

Classical
Apply operation until loop
terminates

Loop k := 2; while(k ≤ r);
|K ⟩

|cntl1⟩

|cntl2⟩

|ψ⟩

|K
⟩≥

2

|K
⟩≤

r

Apply Task

(|K
⟩≤

r)
−

1

(|K
⟩

≥
2)

−
1

±1 |K ⟩

|cntl1⟩

|cntl2⟩

|ψ⟩

bound(K) cycles

Quantum: worst-case running time for all (unbounded) loops

Marcel Tiepelt, Alan Szepieniec – Quantum LLL 9/1

Pitfall I: unbounded loops
Quantum

Apply as often as necessary,
but not too often

Classical
Apply operation until loop
terminates

Loop k := 2; while(k ≤ r);
|K ⟩

|cntl1⟩

|cntl2⟩

|ψ⟩

|K
⟩≥

2

|K
⟩≤

r

Apply Task

(|K
⟩≤

r)
−

1

(|K
⟩

≥
2)

−
1

±1 |K ⟩

|cntl1⟩

|cntl2⟩

|ψ⟩

bound(K) cycles

Quantum: worst-case running time for all (unbounded) loops

Marcel Tiepelt, Alan Szepieniec – Quantum LLL 9/1

Pitfall Part II: size-reduction cleanup

Size reduction: bi
reduce by bj−−−−−−−→ b̂i

Update M s.t. B̂ = MB̂∗

Classical

⌈mij⌋ ← round(mij)
b̂i ← bi − ⌈mij⌋bj

m̂ij ← mij − ⌈mij⌋
free(⌈mij⌋), free(bi), free(mij)

mij , bi can not be recomputed from m̂ij , b̂ij

⇒ information about larger basis is lost

Marcel Tiepelt, Alan Szepieniec – Quantum LLL 10/1

Pitfall Part II: size-reduction cleanup

Size reduction: bi
reduce by bj−−−−−−−→ b̂i

Update M s.t. B̂ = MB̂∗

Classical
⌈mij⌋ ← round(mij)
b̂i ← bi − ⌈mij⌋bj

m̂ij ← mij − ⌈mij⌋
free(⌈mij⌋), free(bi), free(mij)

mij , bi can not be recomputed from m̂ij , b̂ij

⇒ information about larger basis is lost

Marcel Tiepelt, Alan Szepieniec – Quantum LLL 10/1

Pitfall Part II: size-reduction cleanup

Size reduction: bi
reduce by bj−−−−−−−→ b̂i

Update M s.t. B̂ = MB̂∗

Classical
⌈mij⌋ ← round(mij)
b̂i ← bi − ⌈mij⌋bj

m̂ij ← mij − ⌈mij⌋
free(⌈mij⌋), free(bi), free(mij)

mij , bi can not be recomputed from m̂ij , b̂ij

⇒ information about larger basis is lost

Marcel Tiepelt, Alan Szepieniec – Quantum LLL 10/1

Pitfall Part II: size-reduction cleanup
Quantum

mij −

⌈·⌋ ⌈mij⌋

m̂ij

|mij⟩, |bi⟩ can not be recomputed from |m̂ij⟩, |b̂ij⟩
⇒ |bi⟩, |mij⟩ or |⌈mij⌋⟩ need to be preserved for reversibility

Quantum: need fresh memory in every size-reduction

(similar issues arises from divisions/ preserving the remainder for
fp-numbers)

Marcel Tiepelt, Alan Szepieniec – Quantum LLL 11/1

Pitfall Part II: size-reduction cleanup
Quantum

mij −

⌈·⌋ ⌈mij⌋

m̂ij

|mij⟩, |bi⟩ can not be recomputed from |m̂ij⟩, |b̂ij⟩
⇒ |bi⟩, |mij⟩ or |⌈mij⌋⟩ need to be preserved for reversibility

Quantum: need fresh memory in every size-reduction

(similar issues arises from divisions/ preserving the remainder for
fp-numbers)

Marcel Tiepelt, Alan Szepieniec – Quantum LLL 11/1

Impact?

|M(0)⟩|0⟩...|0⟩

|M(0)⟩|M(1)⟩|0⟩...|0⟩

size-reduce

|M(0)⟩|M(1)⟩|M(2)⟩|0⟩...|0⟩

size-reduce

...

size-reduce

|M(0)⟩|M(1)⟩...|M(bound(K))⟩

size-reduce

Size reduction is conditionally applied to
all vectors of |M(i)⟩
Reversible size-reduction:
|M(i)⟩|B⟩|0⟩ ⇒ |M(i)⟩|B⟩|M(i+1)⟩

How many qubits does this require?
sizeOf(M) qubits for each reduction
bound(K) many iterations

→ bound(K) × sizeOf(M)

Bad if bound(K) is large

Marcel Tiepelt, Alan Szepieniec – Quantum LLL 12/1

Impact?

|M(0)⟩|0⟩...|0⟩

|M(0)⟩|M(1)⟩|0⟩...|0⟩

size-reduce

|M(0)⟩|M(1)⟩|M(2)⟩|0⟩...|0⟩

size-reduce

...

size-reduce

|M(0)⟩|M(1)⟩...|M(bound(K))⟩

size-reduce

Size reduction is conditionally applied to
all vectors of |M(i)⟩
Reversible size-reduction:
|M(i)⟩|B⟩|0⟩ ⇒ |M(i)⟩|B⟩|M(i+1)⟩

How many qubits does this require?
sizeOf(M) qubits for each reduction
bound(K) many iterations

→ bound(K) × sizeOf(M)

Bad if bound(K) is large

Marcel Tiepelt, Alan Szepieniec – Quantum LLL 12/1

Impact?

|M(0)⟩|0⟩...|0⟩

|M(0)⟩|M(1)⟩|0⟩...|0⟩

size-reduce

|M(0)⟩|M(1)⟩|M(2)⟩|0⟩...|0⟩

size-reduce

...

size-reduce

|M(0)⟩|M(1)⟩...|M(bound(K))⟩

size-reduce

Size reduction is conditionally applied to
all vectors of |M(i)⟩
Reversible size-reduction:
|M(i)⟩|B⟩|0⟩ ⇒ |M(i)⟩|B⟩|M(i+1)⟩

How many qubits does this require?
sizeOf(M) qubits for each reduction
bound(K) many iterations

→ bound(K) × sizeOf(M)

Bad if bound(K) is large

Marcel Tiepelt, Alan Szepieniec – Quantum LLL 12/1

Impact?

|M(0)⟩|0⟩...|0⟩

|M(0)⟩|M(1)⟩|0⟩...|0⟩

size-reduce

|M(0)⟩|M(1)⟩|M(2)⟩|0⟩...|0⟩

size-reduce

...

size-reduce

|M(0)⟩|M(1)⟩...|M(bound(K))⟩

size-reduce

Size reduction is conditionally applied to
all vectors of |M(i)⟩
Reversible size-reduction:
|M(i)⟩|B⟩|0⟩ ⇒ |M(i)⟩|B⟩|M(i+1)⟩

How many qubits does this require?
sizeOf(M) qubits for each reduction
bound(K) many iterations

→ bound(K) × sizeOf(M)

Bad if bound(K) is large

Marcel Tiepelt, Alan Szepieniec – Quantum LLL 12/1

Can we do better?
|M(0)⟩|0⟩...|0⟩

|M(0)⟩|M(1)⟩|0⟩...|0⟩

...

|M(0)⟩|M(1)⟩...|M(j−2)⟩|M(j−1)⟩|0⟩

|M(0)⟩|M(1)⟩...|M(j−1)⟩|M(j)⟩

size-reduce

size-reduce

|M(0)⟩|M(1)⟩...|M(j−3)⟩|M(j−2)⟩|0⟩|M(j)⟩

(size-reduce)−1

|M(0)⟩|M(1)⟩|0⟩...|0|M(j)⟩⟩

...

|M(0)⟩|0⟩...|0⟩|M(j)⟩

(size-reduce)−1(size-reduce)−1

→ Requires at most: j×sizeOf(M) qubits

Marcel Tiepelt, Alan Szepieniec – Quantum LLL 13/1

Can we do better?
|M(0)⟩|0⟩...|0⟩

|M(0)⟩|M(1)⟩|0⟩...|0⟩

...

|M(0)⟩|M(1)⟩...|M(j−2)⟩|M(j−1)⟩|0⟩

|M(0)⟩|M(1)⟩...|M(j−1)⟩|M(j)⟩

size-reduce

size-reduce

|M(0)⟩|M(1)⟩...|M(j−3)⟩|M(j−2)⟩|0⟩|M(j)⟩

(size-reduce)−1

|M(0)⟩|M(1)⟩|0⟩...|0|M(j)⟩⟩

...

|M(0)⟩|0⟩...|0⟩|M(j)⟩

(size-reduce)−1(size-reduce)−1

→ Requires at most: j×sizeOf(M) qubits

Marcel Tiepelt, Alan Szepieniec – Quantum LLL 13/1

Can we do better?
|M(0)⟩|0⟩...|0⟩

|M(0)⟩|M(1)⟩|0⟩...|0⟩

...

|M(0)⟩|M(1)⟩...|M(j−2)⟩|M(j−1)⟩|0⟩

|M(0)⟩|M(1)⟩...|M(j−1)⟩|M(j)⟩

size-reduce

size-reduce

|M(0)⟩|M(1)⟩...|M(j−3)⟩|M(j−2)⟩|0⟩|M(j)⟩

(size-reduce)−1

|M(0)⟩|M(1)⟩|0⟩...|0|M(j)⟩⟩

...

|M(0)⟩|0⟩...|0⟩|M(j)⟩

(size-reduce)−1(size-reduce)−1

→ Requires at most: j×sizeOf(M) qubits

Marcel Tiepelt, Alan Szepieniec – Quantum LLL 13/1

Impact?

|M(0)⟩

→ |M(0)⟩|M(j)⟩
→ ...

→ |M(0)⟩|M(j)⟩...|M(bound(K))⟩
(Optimal for j =

√
bound(K))

Trade-off:
(Maximal) number of qubits:

√
bound(K)×sizeOf(M)

For # additional iterations: bound(K)

Marcel Tiepelt, Alan Szepieniec – Quantum LLL 14/1

Impact?

|M(0)⟩
→ |M(0)⟩|M(j)⟩

→ ...

→ |M(0)⟩|M(j)⟩...|M(bound(K))⟩
(Optimal for j =

√
bound(K))

Trade-off:
(Maximal) number of qubits:

√
bound(K)×sizeOf(M)

For # additional iterations: bound(K)

Marcel Tiepelt, Alan Szepieniec – Quantum LLL 14/1

Impact?

|M(0)⟩
→ |M(0)⟩|M(j)⟩
→ ...

→ |M(0)⟩|M(j)⟩...|M(bound(K))⟩
(Optimal for j =

√
bound(K))

Trade-off:
(Maximal) number of qubits:

√
bound(K)×sizeOf(M)

For # additional iterations: bound(K)

Marcel Tiepelt, Alan Szepieniec – Quantum LLL 14/1

Impact?

|M(0)⟩
→ |M(0)⟩|M(j)⟩
→ ...

→ |M(0)⟩|M(j)⟩...|M(bound(K))⟩
(Optimal for j =

√
bound(K))

Trade-off:
(Maximal) number of qubits:

√
bound(K)×sizeOf(M)

For # additional iterations: bound(K)

Marcel Tiepelt, Alan Szepieniec – Quantum LLL 14/1

Resource Estimate

Given basis B := (b1, b2, ..., br), bi ∈ Zd

(qu)bit-length n in bi

bound(K) := r2 log B̂, B̂ := bounds norm of initial basis

#Toffoli #Qubits
QLLL O

(
2 log B̂(r3d + r4)

(
n2

log n + 2n
))

max(d , r) · n

#QubitsM

text-book O
(
r3d log B̂(log B̂) 1

2
)

Schnorr O
(
r2d log B̂(log B̂) 1

2
)

L2 O
(
r(log B̂) 1

2 (1.6d + o(d))
)

Marcel Tiepelt, Alan Szepieniec – Quantum LLL 15/1

Resource Estimate

Given basis B := (b1, b2, ..., br), bi ∈ Zd

(qu)bit-length n in bi

bound(K) := r2 log B̂, B̂ := bounds norm of initial basis

#Toffoli #Qubits
QLLL O

(
2 log B̂(r3d + r4)

(
n2

log n + 2n
))

max(d , r) · n

#QubitsM

text-book O
(
r3d log B̂(log B̂) 1

2
)

Schnorr O
(
r2d log B̂(log B̂) 1

2
)

L2 O
(
r(log B̂) 1

2 (1.6d + o(d))
)

Marcel Tiepelt, Alan Szepieniec – Quantum LLL 15/1

Resource Estimate

Given basis B := (b1, b2, ..., br), bi ∈ Zd

(qu)bit-length n in bi

bound(K) := r2 log B̂, B̂ := bounds norm of initial basis

#Toffoli #Qubits
QLLL O

(
2 log B̂(r3d + r4)

(
n2

log n + 2n
))

max(d , r) · n

#QubitsM

text-book O
(
r3d log B̂(log B̂) 1

2
)

Schnorr O
(
r2d log B̂(log B̂) 1

2
)

L2 O
(
r(log B̂) 1

2 (1.6d + o(d))
)

Marcel Tiepelt, Alan Szepieniec – Quantum LLL 15/1

Application: Groverization of Attack
on Mersenne number cryptosystems

Problem
Given a, b $←− Zp with low Hamming weight , G $←− Zp

Given pk := aG + b = H mod p, Find a, b

(Best) approach due to Beunardeau2017OnTH applies lattice
reduction after partitioning sparse a, b, such that each partition
represents small number
msb lsb

Marcel Tiepelt, Alan Szepieniec – Quantum LLL 16/1

Application: Groverization of Attack
on Mersenne number cryptosystems

Problem
Given a, b $←− Zp with low Hamming weight , G $←− Zp

Given pk := aG + b = H mod p, Find a, b

(Best) approach due to Beunardeau2017OnTH applies lattice
reduction after partitioning sparse a, b, such that each partition
represents small number
msb lsb

Marcel Tiepelt, Alan Szepieniec – Quantum LLL 16/1

Resource Estimate of Grover Oracle

Instantiation for 256-bits of security with n = 756839 the QLLL
oracle requires:

#Toffoli #Qubits
text-book ≈ 285 ≈ 252

Schnorr ≈ 265 ≈ 244

L2 ≈ 255 ≈ 233

Marcel Tiepelt, Alan Szepieniec – Quantum LLL 17/1

Resource Estimate of Grover Oracle

Instantiation for 256-bits of security with n = 756839 the QLLL
oracle requires:

#Toffoli #Qubits
text-book ≈ 285 ≈ 252

Schnorr ≈ 265 ≈ 244

L2 ≈ 255 ≈ 233

Marcel Tiepelt, Alan Szepieniec – Quantum LLL 17/1

Conclusions

Quantum vs.
Apply size-reduction and
swap conditionally

Average is worst-case,
domain knowledge gives
significant improvements!

Split LLL reduction to
improve qubit overhead
O

(
r3d log B̂(log B̂) 1

2
)

Classical
Apply either size-reduction
or swap

Bad worst-case, good
(empirical) average time

Marcel Tiepelt, Alan Szepieniec – Quantum LLL 18/1

