

Quantum LLL

with an Application to Mersenne Number Cryptosystems

Marcel Tiepelt¹ Alan Szepieniec²

¹Karlsruhe Institute of Technology ²Nervos Foundation

Latincrypt 2019 Santiago de Chile, Oct. 2-4

www.kit.edu

Overview

Quantum circuit representation of LLL

- **n** for (textbook) rational numbers
- **for floating-point approximation**

Resource estimates of (sub)circuits, in Toffoli-gates

Focus on qubits count

Consider LLL as a subroutine, e.g., SVP oracle in cryptanalysis

Assume 256 bits of classical security, for $O(2^{256})$ expected number of oracle calls

Consider LLL as a subroutine, e.g., SVP oracle in cryptanalysis

- Assume 256 bits of classical security, for $O(2^{256})$ expected number of oracle calls
- Quantumly: 128 bits of security, Groverization promises improvement to $O(2^{128})$

 \rightarrow Requires efficient translation of LLL into quantum setting!

Consider LLL as a subroutine, e.g., SVP oracle in cryptanalysis

- Assume 256 bits of classical security, for $O(2^{256})$ expected number of oracle calls
- **Quantumly: 128 bits of security, Groverization promises** improvement to $O(2^{128})$

 \rightarrow Requires efficient translation of LLL into quantum setting!

But: translation of (text-book) LLL results in large overhead w.r.t. the number of qubits!

Consider LLL as a subroutine, e.g., SVP oracle in cryptanalysis

- Assume 256 bits of classical security, for $O(2^{256})$ expected number of oracle calls
- **Quantumly: 128 bits of security, Groverization promises** improvement to $O(2^{128})$

 \rightarrow Requires efficient translation of LLL into quantum setting!

But: translation of (text-book) LLL results in large overhead w.r.t. the number of qubits!

Does Grover with a QLLL give us the desired improvement?

(Classical) LLL

1: **Input: Basis** $B = (b_1, b_2, ..., b_r)$ 2: **Output: Reduced Basis** Bˆ 3: B^* , $M \leftarrow$ GSO(B) 4: $k \leftarrow 2$ 5: while $k \le r$ do 6: Size-reduce(b_k , b_{k-1}) 7: **if** Lovász condition holds on b_k , b_{k-1} then 8: Size-reduce(b_k , $\{b_i\}_{0 \le i \le k-1}$), update M 9: $k++$ 10: **else** 11: swap b_k , b_{k-1} , update M 12: $k := max(2, k - 1)$ 13: **end if** 14: **end while**

Variants

Rational M: **Lenstra1982**

Floating-point approximation M **: Schnorr:1988:MEA:48880.48883**

"Best" variant: L ² **10.1007/11426639˙13**

(many more)

Quantum LLL Setup

Registers

- $|B\rangle$ Basis representing a superposition of integer lattices
- $\ket{M^{(i)}}$ transformation M in iteration i s.t.: $B=MB^*$
- |K⟩*,* |cntl⟩ counters, controls

Quantum LLL Setup

Registers

 $|B\rangle$ Basis representing a superposition of integer lattices

```
\ket{M^{(i)}} transformation M in iteration i s.t.: B=MB^*
```
 $|K\rangle$, $|cnt\rangle$ counters, controls

Operations

Arithmetic in $\mathbb O$ or $\mathbb R$, vector operations in $\mathbb Z$ misc compare, round, max (x, y) , ...

Quantum LLL Setup

Registers

- $|B\rangle$ Basis representing a superposition of integer lattices $\ket{M^{(i)}}$ transformation M in iteration i s.t.: $B=MB^*$
- $|K\rangle$, $|cnt\rangle$ counters, controls

Operations

Arithmetic in $\mathbb O$ or $\mathbb R$, vector operations in $\mathbb Z$ misc compare, round, max (x, y) , ...

Notations

function $f(X)$ uncompute (run circuit backwards) $(f(X))^{-1}$

Quantum LLL

Quantum LLL

Classical

Apply operation until loop terminates

Quantum

Apply as often as necessary, but not too often

Classical

Apply operation until loop terminates

Quantum

Apply as often as necessary, but not too often

Classical

Apply operation until loop terminates

Quantum

Apply as often as necessary, but not too often

Classical

Apply operation until loop terminates

Quantum: worst-case running time for all (unbounded) loops

Size reduction: $b_i \xrightarrow{reduce by} b_j \ \hat{b}_i$
Update M s.t. $\hat{B} = M\hat{B}^*$

Classical

Size reduction: $b_i \xrightarrow{reduce by} b_j \ \hat{b}_i$
Update M s.t. $\hat{B} = M\hat{B}^*$

Classical

$$
\begin{aligned}\n\lceil m_{ij} \rceil &\leftarrow \text{round}(m_{ij}) \\
\hat{b}_i &\leftarrow b_i - \lceil m_{ij} \rceil b_j \\
\hat{m}_{ij} &\leftarrow m_{ij} - \lceil m_{ij} \rceil \\
\text{free}(\lceil m_{ij} \rceil), \text{ free}(b_i), \text{ free}(m_{ij})\n\end{aligned}
$$

Size reduction: $b_i \xrightarrow{reduce by} b_j \ \hat{b}_i$
Update M s.t. $\hat{B} = M\hat{B}^*$

Classical

$$
\begin{aligned}\n\lceil m_{ij} \rceil &\leftarrow \text{round}(m_{ij}) \\
\hat{b}_i &\leftarrow b_i - \lceil m_{ij} \rceil b_j \\
\hat{m}_{ij} &\leftarrow m_{ij} - \lceil m_{ij} \rceil \\
\text{free}(\lceil m_{ij} \rceil), \text{ free}(b_i), \text{ free}(m_{ij})\n\end{aligned}
$$

 m_{ij} , b_i can not be recomputed from $\hat{m_{ij}}$, $\hat{b_{ij}}$ \Rightarrow information about *larger* basis is lost

Quantum

 $|m_{ij}\rangle$, $|b_i\rangle$ can not be recomputed from $|\hat{m_{ij}}\rangle$, $|\hat{b_{ij}}\rangle$

 \Rightarrow $|b_i\rangle$, $|m_{ii}\rangle$ or $|\overline{m_{ii}}\rangle$ need to be preserved for reversibility

Quantum

 $|m_{ij}\rangle$, $|b_i\rangle$ can not be recomputed from $|\hat{m_{ij}}\rangle$, $|\hat{b_{ij}}\rangle$ \Rightarrow $|b_i\rangle$, $|m_{ii}\rangle$ or $|\overline{m_{ii}}\rangle$ need to be preserved for reversibility

Quantum: need fresh memory in every size-reduction

(similar issues arises from divisions/ preserving the remainder for fp-numbers)

$$
|M^{(0)}\rangle|0\rangle...|0\rangle
$$
size-reduce

$$
|M^{(0)}\rangle|M^{(1)}\rangle|0\rangle...|0\rangle
$$

- Size reduction is conditionally applied to all vectors of $|M^{(i)}\rangle$
- Reversible size-reduction: $|M^{(i)}\rangle|B\rangle|0\rangle \Rightarrow |M^{(i)}\rangle|B\rangle|M^{(i+1)}\rangle$

- **Size reduction is conditionally applied to** all vectors of $|M^{(i)}\rangle$
- **Reversible size-reduction:** $|M^{(i)}\rangle|B\rangle|0\rangle \Rightarrow |M^{(i)}\rangle|B\rangle|M^{(i+1)}\rangle$

$$
|M^{(0)}\rangle|0\rangle...|0\rangle
$$
\nsize-reduce\n
$$
|M^{(0)}\rangle|M^{(1)}\rangle|0\rangle...|0\rangle
$$
\nsize-reduce\n
$$
|M^{(0)}\rangle|M^{(1)}\rangle|M^{(2)}\rangle|0\rangle...|0\rangle
$$
\nsize-reduce\n
$$
size-reduce
$$
\nsize-reduce\n
$$
|M^{(0)}\rangle|M^{(1)}\rangle...|M^{(bound(K)})\rangle
$$

- **Size reduction is conditionally applied to** all vectors of $|M^{(i)}\rangle$
- Reversible size-reduction: $|M^{(i)}\rangle|B\rangle|0\rangle \Rightarrow |M^{(i)}\rangle|B\rangle|M^{(i+1)}\rangle$
- How many qubits does this require?
	- \blacksquare sizeOf(M) qubits for each reduction
	- bound (K) many iterations
	- \rightarrow bound(K) \times sizeOf(M)

$$
|M^{(0)}\rangle|0\rangle...|0\rangle
$$
\nsize-reduce
\n
$$
|M^{(0)}\rangle|M^{(1)}\rangle|0\rangle...|0\rangle
$$
\nsize-reduce
\n
$$
|M^{(0)}\rangle|M^{(1)}\rangle|M^{(2)}\rangle|0\rangle...|0\rangle
$$
\nsize-reduce
\nsize-reduce
\n
$$
size-reduce
$$
\nsize-reduce
\n
$$
|M^{(0)}\rangle|M^{(1)}\rangle...|M^{(bound(K))}\rangle
$$

- **Size reduction is conditionally applied to** all vectors of $|M^{(i)}\rangle$
- Reversible size-reduction: $|M^{(i)}\rangle|B\rangle|0\rangle \Rightarrow |M^{(i)}\rangle|B\rangle|M^{(i+1)}\rangle$
- How many qubits does this require?
	- \blacksquare sizeOf(M) qubits for each reduction
	- bound (K) many iterations
	- \rightarrow bound(K) \times sizeOf(M)

Bad if bound (K) is large

Can we do better?

Can we do better?

Can we do better?

 \rightarrow Requires at most: j \times sizeOf(M) qubits

Marcel Tiepelt, Alan Szepieniec – [Quantum LLL](#page-0-0) 13/1

 $|M^{(0)}\rangle$

 $\ket{M^{(0)}}$ $\rightarrow \,\vert M^{(0)} \rangle \vert M^{(j)} \rangle$

$$
|M^{(0)}\rangle
$$

\n
$$
\rightarrow |M^{(0)}\rangle |M^{(j)}\rangle
$$

\n
$$
\rightarrow \dots
$$

\n
$$
\rightarrow |M^{(0)}\rangle |M^{(j)}\rangle \dots |M^{(bound(K))}\rangle
$$

(Optimal for
$$
j = \sqrt{\text{bound}(K)}
$$
)

$$
|M^{(0)}\rangle
$$

\n
$$
\rightarrow |M^{(0)}\rangle |M^{(j)}\rangle
$$

\n
$$
\rightarrow \dots
$$

\n
$$
\rightarrow |M^{(0)}\rangle |M^{(j)}\rangle...\vert M^{(bound(K))}\rangle
$$

\n(Optimal for $j = \sqrt{\text{bound}(K)}$)

Trade-off:

(Maximal) number of qubits: $\sqrt{\textsf{bound}(K)}\times$ sizeOf(M) For $\#$ additional iterations: bound(K)

Resource Estimate

- Given basis $B:=(b_1,b_2,...,b_r)$, $b_i\in\mathbb{Z}^d$
- **(qu)**bit-length *n* in b_i
- $bound(K) := r^2 \log \hat{B}$, $\hat{B} :=$ bounds norm of initial basis

Resource Estimate

- Given basis $B:=(b_1,b_2,...,b_r)$, $b_i\in\mathbb{Z}^d$
- **(qu)**bit-length *n* in b_i
- $bound(K) := r^2 \log \hat{B}$, $\hat{B} :=$ bounds norm of initial basis

$$
\frac{\# \text{Toffoli}}{QLLL \quad O\left(2 \log \hat{B}(r^3d + r^4) \left(\frac{n^2}{\log n} + 2n\right)\right)} \bigg| \frac{\# \text{Qubits}}{\max(d, r) \cdot n}
$$

Resource Estimate

Given basis $B:=(b_1,b_2,...,b_r)$, $b_i\in\mathbb{Z}^d$

 \mathbf{r}

- **(qu)**bit-length *n* in b_i
- $bound(K) := r^2 \log \hat{B}$, $\hat{B} :=$ bounds norm of initial basis

$$
\frac{\# \text{Toffoli}}{QLLL \quad O\left(2 \log \hat{B}(r^3d + r^4) \left(\frac{n^2}{\log n} + 2n\right)\right)} \bigg| \frac{\# \text{Qubits}}{\max(d, r) \cdot n}
$$

$$
\begin{array}{c}\n\text{text-book} \\
\text{text-book} \\
\text{Schnorr} \\
L^2\n\end{array}\n\left|\n\begin{array}{c}\n\#\text{Qubits}_M \\
O\left(r^3d\log \hat{B}(\log \hat{B})^{\frac{1}{2}}\right) \\
O\left(r^2d\log \hat{B}(\log \hat{B})^{\frac{1}{2}}\right) \\
O\left(r(\log \hat{B})^{\frac{1}{2}}(1.6d + o(d))\right)\n\end{array}\n\right|
$$

Application: Groverization of Attack on Mersenne number cryptosystems

Problem

- Given $a,b \stackrel{\$}{\leftarrow} \mathbb{Z}_p$ with *low* Hamming weight , $G \stackrel{\$}{\leftarrow} \mathbb{Z}_p$
- Given pk := $aG + b = H$ mod p, Find a, b

Application: Groverization of Attack on Mersenne number cryptosystems

Problem

- Given $a,b \stackrel{\$}{\leftarrow} \mathbb{Z}_p$ with *low* Hamming weight , $G \stackrel{\$}{\leftarrow} \mathbb{Z}_p$
- Given pk := $aG + b = H$ mod p, Find a, b

(Best) approach due to **Beunardeau2017OnTH** applies lattice reduction after partitioning sparse a*,* b, such that each partition represents small number

Instantiation for 256-bits of security with $n = 756839$ the QLLL oracle requires:

Instantiation for 256-bits of security with $n = 756839$ the QLLL oracle requires:

Conclusions

Quantum vs.

- Apply size-reduction **and** swap conditionally
- **Average is worst-case,** domain knowledge gives significant improvements!
- **Split LLL reduction to** improve qubit overhead $O(r^3d \log \hat{B}(\log \hat{B})^{\frac{1}{2}})$

Classical

- **Apply either size-reduction or** swap
- **Bad worst-case, good** (empirical) average time