

Quantum LLL

with an Application to Mersenne Number Cryptosystems

Marcel Tiepelt¹ Alan Szepieniec²

¹Karlsruhe Institute of Technology ²Nervos Foundation

Latincrypt 2019 Santiago de Chile, Oct. 2-4

www.kit.edu

Overview

Quantum circuit representation of LLL

- for (textbook) rational numbers
- for floating-point approximation

Resource estimates of (sub)circuits, in Toffoli-gates

Focus on qubits count

Consider LLL as a subroutine, e.g., SVP oracle in cryptanalysis

• Assume 256 bits of classical security, for $O(2^{256})$ expected number of oracle calls

Consider LLL as a subroutine, e.g., SVP oracle in cryptanalysis

- Assume 256 bits of classical security, for $O(2^{256})$ expected number of oracle calls
- Quantumly: 128 bits of security, Groverization promises improvement to $O(2^{128})$

 $\rightarrow\,$ Requires efficient translation of LLL into quantum setting!

Consider LLL as a subroutine, e.g., SVP oracle in cryptanalysis

- Assume 256 bits of classical security, for $O(2^{256})$ expected number of oracle calls
- Quantumly: 128 bits of security, Groverization promises improvement to $O(2^{128})$

 $\rightarrow\,$ Requires efficient translation of LLL into quantum setting!

But: translation of (text-book) LLL results in large overhead w.r.t. the number of qubits!

Consider LLL as a subroutine, e.g., SVP oracle in cryptanalysis

- Assume 256 bits of classical security, for $O(2^{256})$ expected number of oracle calls
- Quantumly: 128 bits of security, Groverization promises improvement to $O(2^{128})$
 - $\rightarrow\,$ Requires efficient translation of LLL into quantum setting!
- But: translation of (text-book) LLL results in large overhead w.r.t. the number of qubits!

Does Grover with a QLLL give us the desired improvement?

(Classical) LLL

1: Input: Basis $B = (b_1, b_2, ..., b_r)$ 2: Output: Reduced Basis \hat{B} 3: $B^*, M \leftarrow \text{GSO(B)}$ 4: $k \leftarrow 2$ 5: while k < r do Size-reduce(b_k , b_{k-1}) 6: **if** Lovász condition holds on b_k, b_{k-1} **then** 7: Size-reduce(b_k , { b_i } $_{0 < i < k-1}$), update M8: k++9: 10: else swap b_k, b_{k-1} , update M 11: k := max(2, k-1)12: end if 13: 14: end while

Variants

Rational M: Lenstra1982

 Floating-point approximation M: Schnorr:1988:MEA:48880.48883

"Best" variant: L² 10.1007/11426639'13

(many more)

Quantum LLL Setup

Registers

- $|B\rangle$ Basis representing a superposition of integer lattices
- $|M^{(i)}\rangle$ transformation M in iteration i s.t.: $B = MB^*$
- |K
 angle, |cntl
 angle counters, controls

Quantum LLL Setup

Registers

 $|B\rangle$ Basis representing a superposition of integer lattices

```
|M^{(i)}\rangle transformation M in iteration i s.t.: B = MB^*
```

|K
angle, |cntl
angle counters, controls

Operations

Arithmetic in \mathbb{Q} or \mathbb{R} , vector operations in \mathbb{Z} misc compare, round, max(x, y), ...

Quantum LLL Setup

Registers

- $|B\rangle$ Basis representing a superposition of integer lattices
- $|M^{(i)}\rangle$ transformation M in iteration i s.t.: $B = MB^*$
- |K
 angle, |cntl
 angle counters, controls

Operations

Arithmetic in \mathbb{Q} or \mathbb{R} , vector operations in \mathbb{Z} misc compare, round, max(x, y), ...

Notations

function f(X)uncompute (run circuit backwards) $(f(X))^{-1}$

Quantum LLL

Quantum LLL

Classical

 Apply operation until loop terminates

Quantum

 Apply as often as necessary, but not *too* often Classical

 Apply operation until loop terminates

Quantum

 Apply as often as necessary, but not *too* often Classical

 Apply operation until loop terminates

Quantum

 Apply as often as necessary, but not *too* often Classical

 Apply operation until loop terminates

Quantum: worst-case running time for all (unbounded) loops

Size reduction: $b_i \xrightarrow{\text{reduce by } b_j} \hat{b}_i$ Update M s.t. $\hat{B} = M\hat{B}^*$

Classical

Size reduction: $b_i \xrightarrow{\text{reduce by } b_j} \hat{b}_i$ Update M s.t. $\hat{B} = M\hat{B}^*$

Classical

$$\begin{bmatrix} m_{ij} \end{bmatrix} \leftarrow \text{round}(m_{ij}) \\ \hat{b}_i \leftarrow b_i - \begin{bmatrix} m_{ij} \end{bmatrix} b_j \\ \hat{m}_{ij} \leftarrow m_{ij} - \begin{bmatrix} m_{ij} \end{bmatrix} \\ \text{free}(\begin{bmatrix} m_{ij} \end{bmatrix}), \text{ free}(b_i), \text{ free}(m_{ij})$$

Size reduction: $b_i \xrightarrow{\text{reduce by } b_i} \hat{b}_i$ Update M s.t. $\hat{B} = M\hat{B}^*$

Classical

$$\begin{bmatrix} m_{ij} \end{bmatrix} \leftarrow \text{round}(m_{ij}) \\ \hat{b}_i \leftarrow b_i - \begin{bmatrix} m_{ij} \end{bmatrix} b_j \\ \hat{m}_{ij} \leftarrow m_{ij} - \begin{bmatrix} m_{ij} \end{bmatrix} \\ \text{free}(\begin{bmatrix} m_{ij} \end{bmatrix}), \text{ free}(b_i), \text{ free}(m_{ij})$$

 m_{ij} , b_i can not be recomputed from \hat{m}_{ij} , \hat{b}_{ij} \Rightarrow information about *larger* basis is lost

Quantum

 $\ket{m_{ij}}, \ket{b_i}$ can not be recomputed from $\ket{\hat{m_{ij}}}, \ket{\hat{b_{ij}}}$

 \Rightarrow $|b_i\rangle$, $|m_{ij}\rangle$ or $|\lceil m_{ij} \rfloor\rangle$ need to be preserved for reversibility

Quantum

 $|m_{ij}\rangle$, $|b_i\rangle$ can not be recomputed from $|\hat{m}_{ij}\rangle$, $|\hat{b}_{ij}\rangle$ $\Rightarrow |b_i\rangle$, $|m_{ij}\rangle$ or $|\lceil m_{ij} \rfloor\rangle$ need to be preserved for reversibility

Quantum: need fresh memory in every size-reduction

(similar issues arises from divisions/ preserving the remainder for fp-numbers)

$$|M^{(0)}\rangle|0\rangle...|0\rangle$$
size-reduce
$$|M^{(0)}\rangle|M^{(1)}\rangle|0\rangle...|0\rangle$$

- Size reduction is conditionally applied to all vectors of $|M^{(i)}\rangle$
- Reversible size-reduction: $|M^{(i)}\rangle|B\rangle|0\rangle \Rightarrow |M^{(i)}\rangle|B\rangle|M^{(i+1)}\rangle$

$$|M^{(0)}\rangle|0\rangle...|0\rangle$$
size-reduce
$$|M^{(0)}\rangle|M^{(1)}\rangle|0\rangle...|0\rangle$$
size-reduce
$$|M^{(0)}\rangle|M^{(1)}\rangle|M^{(2)}\rangle|0\rangle...|0\rangle$$
size-reduce
$$...$$
size-reduce
$$|M^{(0)}\rangle|M^{(1)}\rangle...|M^{(bound(K))}\rangle$$

- ${\ }$ Size reduction is conditionally applied to all vectors of $|{\cal M}^{(i)}\rangle$
- Reversible size-reduction: $|M^{(i)}\rangle|B\rangle|0\rangle \Rightarrow |M^{(i)}\rangle|B\rangle|M^{(i+1)}\rangle$

$$|M^{(0)}\rangle|0\rangle...|0\rangle$$
size-reduce
$$|M^{(0)}\rangle|M^{(1)}\rangle|0\rangle...|0\rangle$$
size-reduce
$$|M^{(0)}\rangle|M^{(1)}\rangle|M^{(2)}\rangle|0\rangle...|0\rangle$$
size-reduce
$$...$$
size-reduce
$$|M^{(0)}\rangle|M^{(1)}\rangle...|M^{(bound(K))}\rangle$$

- Size reduction is conditionally applied to all vectors of $|M^{(i)}\rangle$
- Reversible size-reduction: $|M^{(i)}\rangle|B\rangle|0\rangle \Rightarrow |M^{(i)}\rangle|B\rangle|M^{(i+1)}\rangle$
- How many qubits does this require?
 - sizeOf(M) qubits for each reduction
 - bound(K) many iterations
 - \rightarrow bound(K) \times sizeOf(M)

$$|M^{(0)}\rangle|0\rangle...|0\rangle$$
size-reduce
$$|M^{(0)}\rangle|M^{(1)}\rangle|0\rangle...|0\rangle$$
size-reduce
$$|M^{(0)}\rangle|M^{(1)}\rangle|M^{(2)}\rangle|0\rangle...|0\rangle$$
size-reduce
$$...$$
size-reduce
$$|M^{(0)}\rangle|M^{(1)}\rangle...|M^{(bound(K))}$$

- Size reduction is conditionally applied to all vectors of $|M^{(i)}
 angle$
- Reversible size-reduction: $|M^{(i)}\rangle|B\rangle|0\rangle \Rightarrow |M^{(i)}\rangle|B\rangle|M^{(i+1)}\rangle$
- How many qubits does this require?
 - sizeOf(M) qubits for each reduction
 - bound(K) many iterations
 - \rightarrow bound(K) \times sizeOf(M)

Bad if bound(K) is large

Can we do better?

Can we do better?

Can we do better?

 \rightarrow Requires at most: *j*×sizeOf(M) qubits

Marcel Tiepelt, Alan Szepieniec - Quantum LLL

 $|M^{(0)}
angle$

 $|M^{(0)}
angle
ightarrow |M^{(0)}
angle |M^{(j)}
angle$

$$|M^{(0)}\rangle
\rightarrow |M^{(0)}\rangle|M^{(j)}\rangle
\rightarrow ...
\rightarrow |M^{(0)}\rangle|M^{(j)}\rangle...|M^{(bound(K))}\rangle
(Optimal for $j = \sqrt{bound(K)}$)$$

$$|M^{(0)}\rangle \\ \rightarrow |M^{(0)}\rangle|M^{(j)}\rangle \\ \rightarrow \dots \\ \rightarrow |M^{(0)}\rangle|M^{(j)}\rangle\dots|M^{(bound(K))}\rangle \\ \text{(Optimal for } j = \sqrt{\text{bound}(K)}$$

Trade-off:

(Maximal) number of qubits: $\sqrt{\text{bound}(K)} \times \text{sizeOf}(M)$ For # additional iterations: bound(K)

))

Resource Estimate

- Given basis $B := (b_1, b_2, ..., b_r)$, $b_i \in \mathbb{Z}^d$
- (qu)bit-length n in b_i
- $bound(K) := r^2 \log \hat{B}, \hat{B} := bounds norm of initial basis$

Resource Estimate

- Given basis $B := (b_1, b_2, ..., b_r)$, $b_i \in \mathbb{Z}^d$
- (qu)bit-length n in b_i
- $bound(K) := r^2 \log \hat{B}, \hat{B} := bounds norm of initial basis$

$$\begin{array}{c|c} \#\text{Toffoli} & \#\text{Qubits} \\ \text{QLLL} & O\left(2\log\hat{B}(r^3d+r^4)\left(\frac{n^2}{\log n}+2n\right)\right) & \max(d,r)\cdot n \end{array}$$

Resource Estimate

- Given basis $B := (b_1, b_2, ..., b_r)$, $b_i \in \mathbb{Z}^d$
- (qu)bit-length n in b_i
- $bound(K) := r^2 \log \hat{B}, \hat{B} := bounds \text{ norm of initial basis}$

$$\begin{array}{c|c} & \#\text{Toffoli} & \#\text{Qubits} \\ \text{QLLL} & O\left(2\log\hat{B}(r^3d+r^4)\left(\frac{n^2}{\log n}+2n\right)\right) & \max(d,r)\cdot n \end{array}$$

text-book
Schnorr
$$L^{2}$$

$$\begin{pmatrix} \# \text{Qubits}_{M} \\ O\left(r^{3}d\log\hat{B}(\log\hat{B})^{\frac{1}{2}}\right) \\ O\left(r^{2}d\log\hat{B}(\log\hat{B})^{\frac{1}{2}}\right) \\ O\left(r(\log\hat{B})^{\frac{1}{2}}(1.6d+o(d))\right) \end{pmatrix}$$

Application: Groverization of Attack on Mersenne number cryptosystems

Problem

- Given $a, b \stackrel{\$}{\leftarrow} \mathbb{Z}_p$ with *low* Hamming weight , $G \stackrel{\$}{\leftarrow} \mathbb{Z}_p$
- Given $pk := aG + b = H \mod p$, Find a, b

Application: Groverization of Attack on Mersenne number cryptosystems

Problem

- Given $a, b \stackrel{\$}{\leftarrow} \mathbb{Z}_p$ with *low* Hamming weight , $G \stackrel{\$}{\leftarrow} \mathbb{Z}_p$
- Given $pk := aG + b = H \mod p$, Find a, b

(Best) approach due to **Beunardeau2017OnTH** applies lattice reduction after partitioning sparse a, b, such that each partition represents small number

Instantiation for 256-bits of security with n = 756839 the QLLL oracle requires:

Instantiation for 256-bits of security with n = 756839 the QLLL oracle requires:

	#Toffoli	#Qubits
text-book	$pprox 2^{85}$	$pprox 2^{52}$
Schnorr	$pprox 2^{65}$	$pprox 2^{44}$
L^2	$pprox 2^{55}$	$pprox 2^{33}$

Conclusions

Quantum

VS.

- Apply size-reduction and swap conditionally
- Average is worst-case, domain knowledge gives significant improvements!
- Split LLL reduction to improve qubit overhead $O\left(r^3 d \log \hat{B} (\log \hat{B})^{\frac{1}{2}}\right)$

Classical

- Apply either size-reduction or swap
- Bad worst-case, good (empirical) average time