Quantum Lattice Enumeration in Limited Depth CRYPTO 2024

Nina Bindel¹ Xavier Bonnetain² Marcel Tiepelt³ Fernando Virdia⁴

¹ SandboxAQ, Palo Alto, CA, USA

² Université de Lorraine, CNRS, Inria, Nancy, France

³ KASTEL, Karlsruhe Institute of Technology, Karlsruhe, Germany

⁴ Univerisdade NOVA de Lisboa, NOVA LINCS, Lisbon, Portugal

Why Lattice Enumeration?

- Lattice-based constructions popular
- ▶ 3 out of 4 NIST *post-quantum standards* are based on lattice assumptions

Why Lattice Enumeration as SVP Solver?

- Leading cost of state-of-the-art attacks is cost of SVP solver
- Lattice sieving analyzed in quantum setting¹
- Quantum lattice enumeration analyzed in *asymptotic* setting² and unbounded quantum circuit model³

¹[1] Albrecht et al. "Estimating Quantum Speedups for Lattice Sieves"

^[5] Chailloux et al. "Lattice Sieving via Quantum Random Walks"

²[3] Bai et al. "Concrete Analysis of Quantum Lattice Enumeration"

³[2] Aono et al."Quantum Lattice Enumeration and Tweaking Discrete Pruning"

Why Lattice Enumeration as SVP Solver?

- Leading cost of state-of-the-art attacks is cost of SVP solver
- Lattice sieving analyzed in quantum setting¹
- Quantum lattice enumeration analyzed in *asymptotic* setting² and unbounded quantum circuit model³

Concrete speedup of quantum lattice enumeration for practical parameters remains unclear.

¹[1] Albrecht et al. "Estimating Quantum Speedups for Lattice Sieves"

^[5] Chailloux et al. "Lattice Sieving via Quantum Random Walks"

²[3] Bai et al. "Concrete Analysis of Quantum Lattice Enumeration"

³[2] Aono et al."Quantum Lattice Enumeration and Tweaking Discrete Pruning"

Today

Today

► GCost: Number of quantum gates

- ► GCost: Number of quantum gates
- ► T-DEPTH: Consecutive gates

(appears to be a main hurdle)

- ► GCost: Number of quantum gates
- ► T-DEPTH: Consecutive gates

(appears to be a main hurdle)

▶ Hypothetical $MaxDepth \in \{2^{40}, 2^{64}, 2^{96}\}$ by NIST⁴:

⁴[9] NIST Submission Requirements and Evaluation Criteria for the Post-Quantum Cryptography Standardization Process

- ► GCost: Number of quantum gates
- ► T-DEPTH: Consecutive gates

(appears to be a main hurdle)

▶ Hypothetical $MaxDepth \in \{2^{40}, 2^{64}, 2^{96}\}$ by NIST⁴:

One needs: T-DEPTH(QENUM) \leq MAXDEPTH

⁴[9] NIST Submission Requirements and Evaluation Criteria for the Post-Quantum Cryptography Standardization Process

Today

Setup

- Lattice $\mathcal{L}(B)$, dimension *n*
- Enumeration: Given *B*, bound *R*, finds \vec{v} s.t. $0 < ||\vec{v}|| \le R$

Setup

- Lattice $\mathcal{L}(B)$, dimension *n*
- ► Enumeration: Given B, bound R, finds v s.t. 0 < ||v|| ≤ R</p>

Enumeration with extreme pruning⁵

► DFS defines enumeration tree(s)

³[6] Gama et al. "Lattice Enumeration Using Extreme Pruning"

Setup

- Lattice $\mathcal{L}(B)$, dimension *n*
- ► Enumeration: Given B, bound R, finds v s.t. 0 < ||v|| ≤ R</p>

Enumeration with extreme pruning⁵

► DFS defines enumeration tree(s)

³[6] Gama et al. "Lattice Enumeration Using Extreme Pruning"

Time complexity

• Classical: $\mathcal{O}(\#\mathcal{T}(r))$

Quantum Lattice Enumeration

Time complexity

- ► Classical: $\mathcal{O}(\#\mathcal{T}(r))$
- ► Quantum⁶:
 - QPE: $\mathcal{O}(\sqrt{\#\mathcal{T}(r)\cdot n})$ calls to \mathcal{W}
 - poly(n) classical repetitions of QPE(W)

⁶[8] Montanaro's "Quantum-Walk Speedup of Backtracking Algorithms"

Quantum Lattice Enumeration

Time complexity

- ► Classical: $\mathcal{O}(\#\mathcal{T}(r))$
- ► Quantum⁶:
 - QPE: $\mathcal{O}(\sqrt{\#\mathcal{T}(r)\cdot n})$ calls to \mathcal{W}
 - poly(n) classical repetitions of QPE(W)

Only $QPE(\mathcal{W})$ is a quantum circuit:

 $\text{T-Depth}(\text{QEnum}(\mathcal{T}(r))) = \text{T-Depth}(\text{QPE}(\mathcal{W}))$

⁶[8] Montanaro's "Quantum-Walk Speedup of Backtracking Algorithms"

Depth of Full Quantum Enumeration

Disclaimer: Very loosely estimated numbers. (don't quote us on **these**)

- QPE(W) applied to full enumeration tree of depth β
- ▶ Ignoring Jensen's Gap $\mathbb{E}[\sqrt{\#\mathcal{T}(r) \cdot h}]$ (we will come back to this later)
- Limitation: $log_2(MAXDEPTH) \in \{40, 64, 96\}$

Depth of Full Quantum Enumeration

Disclaimer: Very loosely estimated numbers. (don't quote us on **these**)

- QPE(W) applied to full enumeration tree of depth β
- ▶ Ignoring Jensen's Gap $\mathbb{E}[\sqrt{\#\mathcal{T}(r) \cdot h}]$ (we will come back to this later)
- Limitation: $log_2(MAXDEPTH) \in \{40, 64, 96\}$

$$\log_2 \mathbb{E}[\text{T-Depth}(\text{QPE}(\mathcal{W}))] \approx \begin{cases} 90 & \text{for Kyber-512} \leq \log(\text{MaxDepth}) \\ 166 & \text{for Kyber-768} \gg \log(\text{MaxDepth}) \\ 263 & \text{for Kyber-1024} \gg \log(\text{MaxDepth}) \end{cases}$$

Today

A Quantum-Classical Algorithm (simplified)

• Classical precomputation: up to level k

A Quantum-Classical Algorithm (simplified)

- Classical precomputation: up to level k
- QENUM($\mathcal{T}(g_i)$) for every node g_i on level k

A Quantum-Classical Algorithm (simplified)

- Classical precomputation: up to level k
 QENUM($\mathcal{T}(g_i)$) for every node g_i on level k
 Choose level k such that T-DEPTH(QPE(W)) \leq MAXDEPTH
 - ... and also reducing overall cost.

(1) Size $\# \mathcal{T}(g_i)$ of subtrees⁷

(1) Size $\# \mathcal{T}(g_i)$ of subtrees⁷

(2) Distribution of subtrees⁷

- (1) Size $\# \mathcal{T}(g_i)$ of subtrees⁷
- (2) Distribution of subtrees⁷
- (3) #calls to \mathcal{W}^7 : $\sqrt{\#\mathcal{T}(g_i) \cdot h}$

⁷[4, Conj. 1, 2, 3] This work. Bindel et al. "Quantum Lattice Enumeration in Limited Depth"

- (1) Size $\# \mathcal{T}(g_i)$ of subtrees⁷
- (2) Distribution of subtrees⁷
- (3) #calls to \mathcal{W}^7 : $\sqrt{\#\mathcal{T}(g_i) \cdot h}$
- (4) Multiplicative Jensen's Gap 2^z: (property of the trees)

⁷[4, Conj. 1, 2, 3] This work. Bindel et al. "Quantum Lattice Enumeration in Limited Depth"

Today

Compute

 $\textbf{Total Cost} = \textbf{Classical Precomputation} + \underset{\substack{\text{random}\\\text{tree }\mathcal{T}}}{\mathbb{E}} \left[\sum_{\substack{g_i\\\text{on level }k}} \textbf{GCOST}(\textbf{QENUM}(\mathcal{T}(g_i))) \right]$

Compute

$$\textbf{Total Cost} = \textbf{Classical Precomputation} + \underset{\substack{\text{random}\\\text{tree } \mathcal{T}}}{\mathbb{E}} \left[\sum_{\substack{g_i\\\text{on level } k}} \textbf{GCOST}(\textbf{QENUM}(\mathcal{T}(g_i))) \right]$$

-

with level k such that

T-Depth(QPE(W)) \leq MaxDepth,

-

Compute

$$\textbf{Total Cost} = \textbf{Classical Precomputation} + \underset{\substack{\text{random}\\\text{tree } \mathcal{T}}}{\mathbb{E}} \left[\sum_{\substack{g_i\\\text{on level } k}} \textbf{GCOST}(\textbf{QENUM}(\mathcal{T}(g_i))) \right]$$

-

with level k such that

 $\text{T-Depth}(\mathsf{QPE}(\mathcal{W})) \leq \text{MaxDepth},$

compare **Total Cost** to running Grover's algorithm on AES^8 .

_

 $^{^{8}\}ensuremath{[7]}$ Jaques et al. "Implementing Grover Oracles for Quantum Key Search on AES and LowMC"

Compute

$$\textbf{Total Cost} = \textbf{Classical Precomputation} + \mathbb{E}_{\substack{\text{random} \\ \text{tree } \mathcal{T}}} \left[\sum_{\substack{g_i \\ \text{on level } k}} \textbf{GCOST}(\textbf{QENUM}(\mathcal{T}(g_i))) \right]$$

г

with level k such that

 $\text{T-Depth}(\mathsf{QPE}(\mathcal{W})) \leq \text{MaxDepth},$

compare **Total Cost** to running Grover's algorithm on AES⁸.

Find Jensen's Gap 2^z such that

Total Cost \leq Cost of Grover on AES with T-DEPTH(QPE(W)) \leq MAXDEPTH

٦

⁸[7] Jaques et al. "Implementing Grover Oracles for Quantum Key Search on AES and LowMC"

Reminder: Multiplicative Jensen's Gap $2^z \cdot \mathbb{E}[\sqrt{X}] \leq \sqrt{\mathbb{E}[X]}$

more likely to be feasible							less li	kely to be feasible
	Kyber-512		Kyber-768			Ky	ber-1024	
			W					
MaxDepth	1	minimal		1	minimal		1	minimal

Reminder: Multiplicative Jensen's Gap $2^z \cdot \mathbb{E}[\sqrt{X}] \leq \sqrt{\mathbb{E}[X]}$

more likely to be feasible						less lil	kely to be feasible	
	Kyl	per-512		Kyber-768		Kyl	ber-1024	
		GCOST of quantum walk operator ${\mathcal W}$						
MaxDepth	1	minimal	1	l minin	nal	1	minimal	

Reminder: Multiplicative Jensen's Gap $2^z \cdot \mathbb{E}[\sqrt{X}] \leq \sqrt{\mathbb{E}[X]}$

more likely to be feasible							less like	ly to be feasible
	Kybe	er-512		Kybe	r-768		Kybe	r-1024
		GCOST of quantum walk operator ${\mathcal W}$						
MaxDepth	1	minimal		1	minimal		1	minimal
2 ⁴⁰	$z \ge 0$	$z \ge 0$		$z \ge 2$	$z \ge 17$		$z \ge 50$	z > 64
2°4	$z \geq 0$	$z \geq 0$		$z \geq 1$	$z \ge 17$		$z \ge 49$	z > 64
296	$z \geq 0$	$z \geq 0$		$z \geq 1$	$z \ge 19$		$z \ge 51$	z > 64

Reminder: Multiplicative Jensen's Gap $2^{z} \cdot \mathbb{E}[\sqrt{X}] < \sqrt{\mathbb{E}[X]}$

"hypothetical lower bounds" for $\#\mathcal{T}(g_i)$ (LB/UB in our paper)

more likely to be feasible					less likel	y to be feasible		
	Kybe	er-512	Kybe	r-768	Kybe	r-1024		
		GCost of quantum walk operator ${\mathcal W}$						
MaxDepth	1	minimal	1	minimal	1	minimal		
2 ⁴⁰	$z \geq 0$	$z \ge 0$	$z \geq 2$	$z \ge 17$	$z \ge 50$	z > 64		
2 ⁶⁴	$z \ge 0$	$z \ge 0$	$z \geq 1$	$z \ge 17$	$z \ge 49$	z > 64		
2 ⁹⁶	$z \ge 0$	$z \ge 0$	$z \ge 1$	$z \ge 19$	$z \ge 51$	z > 64		
		~						

quantum speedup... ...may be possible

Reminder: Multiplicative Jensen's Gap $2^z \cdot \mathbb{E}[\sqrt{X}] \leq \sqrt{\mathbb{E}[X]}$

more likely to be feasible					less like	ly to be feasible	
	Kybe	er-512	Kybe	r-768	Kybe	Kyber-1024	
		($ m GCOST$ of quantum walk operator ${\cal V}$				
MaxDepth	1	minimal	1	minimal	1	minimal	
2 ⁴⁰ 2 ⁶⁴ 2 ⁹⁶	$ \begin{array}{cccc} z &\geq 0 \\ z &\geq 0 \\ z &\geq 0 \end{array} $	$ \begin{array}{cccc} z &\geq 0 \\ z &\geq 0 \\ z &\geq 0 \end{array} $	$z \ge 2$ $z \ge 1$ $z \ge 1$	$z \ge 17$ $z \ge 17$ $z \ge 19$	$ \begin{array}{c c} z \ge 50 \\ \hline z \ge 49 \\ \hline z \ge 51 \end{array} $	z > 64 $z > 64$ $z > 64$	
quantum speedup	may b	e possible	may be "tri quantum	possible for vial" operator			

Reminder: Multiplicative Jensen's Gap $2^z \cdot \mathbb{E}[\sqrt{X}] \leq \sqrt{\mathbb{E}[X]}$

Reminder: Multiplicative Jensen's Gap $2^z \cdot \mathbb{E}[\sqrt{X}] \leq \sqrt{\mathbb{E}[X]}$

"state-of-the-art" bounds for $\#\mathcal{T}(g_i)$ (UB/UB in our paper)

more likely to be feasible							less like	y to be feasible
	Kybe	r-512		Kybe	r-768		Kybe	r-1024
		GCost of quantum walk operator ${\mathcal W}$						
MaxDepth	1	minimal		1	minimal		1	minimal
2 ⁴⁰ 2 ⁶⁴ 2 ⁹⁶	$z \ge 20$ $z \ge 20$ $z \ge 15$	$ \begin{array}{r}z \geq 36 \\ z \geq 36 \\ z \geq 40\end{array} $		$z \ge 61$ $z \ge 61$ $z \ge 61$	z > 64 $z > 64$ $z > 64$		z > 64 $z > 64$ $z > 64$ $z > 64$	

Reminder: Multiplicative Jensen's Gap $2^z \cdot \mathbb{E}[\sqrt{X}] \leq \sqrt{\mathbb{E}[X]}$

"state-of-the-art" bounds for $\#\mathcal{T}(g_i)$ (UB/UB in our paper)

more likely to be feasible						less likel	y to be feasible	
	Kybe	r-512	Kybe	r-768		Kyber-1024		
		GCost of quantum walk operator ${\mathcal W}$						
MaxDepth	1	minimal	1	minimal		1	minimal	
2 ⁴⁰ 2 ⁶⁴ 2 ⁹⁶	$ \begin{array}{c} z \ge 20 \\ z \ge 20 \\ z \ge 15 \end{array} $	$z \ge 36$ $z \ge 36$ $z \ge 40$	$ \begin{array}{c c} z \ge 61 \\ z \ge 61 \\ z \ge 61 \end{array} $	z > 64 $z > 64$ $z > 64$		z > 64 $z > 64$ $z > 64$ $z > 64$	z > 64 $z > 64$ $z > 64$	

quantum speedup...

...questionable even for "trivial" quantum operator

Reminder: Multiplicative Jensen's Gap $2^z \cdot \mathbb{E}[\sqrt{X}] \leq \sqrt{\mathbb{E}[X]}$

"state-of-the-art" bounds for $\#\mathcal{T}(g_i)$ (UB/UB in our paper)

Reminder: Multiplicative Jensen's Gap $2^z \cdot \mathbb{E}[\sqrt{X}] \leq \sqrt{\mathbb{E}[X]}$

"state-of-the-art" bounds for $\#\mathcal{T}(g_i)$ (UB/UB in our paper)

Conclusion

There exists a gap between generous lower bounds, and actual expected cost.

 2^z , W, ... (more in our paper)

Better understanding of degree of uncertainty from properties of enumeration trees.

Conclusion

There exists a gap between generous lower bounds, and actual expected cost.

 2^z , W, ... (more in our paper)

Better understanding of degree of uncertainty from properties of enumeration trees.

Marcel Tiepelt, marcel.tiepelt@kit.edu

```
ePrint:
https://eprint.iacr.org/2023/1423
```

Code:

https://github.com/mtiepelt/QuantumLatticeEnumeration

Slides:

(link to eprint)

https://mtiepelt.github.io/Pages/Publications

Bibliography I

- M. R. Albrecht et al. "Estimating Quantum Speedups for Lattice Sieves". In: Advances in Cryptology – ASIACRYPT 2020. Cham, 2020. DOI: 10.1007/978-3-030-64834-3_20.
- Y. Aono et al. "Quantum Lattice Enumeration and Tweaking Discrete Pruning". In: Advances in Cryptology – ASIACRYPT 2018. Cham, 2018.
- [3] S. Bai et al. "Concrete Analysis of Quantum Lattice Enumeration". English. In: Advances in Cryptology ASIACRYPT 2023 - 29th International Conference on the Theory and Application of Cryptology and Information Security, Proceedings. Germany, 2023. DOI: 10.1007/978-981-99-8727-6_5.
- [4] N. Bindel et al. "Quantum Lattice Enumeration in Limited Depth". Cryptology ePrint Archive, Paper 2023/1423. 2023.

Bibliography II

- [5] A. Chailloux and J. Loyer. "Lattice Sieving via Quantum Random Walks". In: Advances in Cryptology – ASIACRYPT 2021. Cham, 2021. DOI: 10.1007/978-3-030-92068-5_3.
- [6] N. Gama et al. "Lattice Enumeration Using Extreme Pruning". In: Advances in Cryptology – EUROCRYPT 2010. Berlin, Heidelberg, 2010. DOI: 10.1007/978-3-642-13190-5_13.
- [7] S. Jaques et al. "Implementing Grover Oracles for Quantum Key Search on AES and LowMC". In: Advances in Cryptology - EUROCRYPT 2020 - 39th Annual International Conference on the Theory and Applications of Cryptographic Techniques, Zagreb, Croatia, May 10-14, 2020, Proceedings, Part II. Vol. 12106. 2020. DOI: 10.1007/978-3-030-45724-2_10.
- [8] A. Montanaro. "Quantum-Walk Speedup of Backtracking Algorithms". In: Theory Comput. 14.1 (2018). DOI: 10.4086/T0C.2018.V014A015.

Bibliography III

[9] NIST. Submission Requirements and Evaluation Criteria for the Post-Quantum Cryptography Standardization Process. 2016.