
Costing Adversaries on Quantum-secure Cryptography

Zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften

von der KIT-Fakultät für Informatik
des Karlsruher Instituts für Technologie (KIT)

genehmigte

Dissertation

von

Kevin Marcel Tiepelt

Tag der mündlichen Prüfung: 23. Januar 2025

1. Referent: Prof. Dr. Jörn Müller-Quade

2. Referent: Prof. Dr. Douglas Stebila

3. Referent: Prof. Dr. Daniel Loebenberger

This version of the dissertation is optimized for digital reading. That means that it is one-sided, links are
embedded into the PDF rather than the margins and the citation in footnotes is increased to one per page (rather

than one per a pair of even-odd-pages). The content and page numbers are identical.

Acknowledgments

The journey to completing my dissertation was challenging, fun, rewarding
but also frustrating at times, and would not have been possible without the
guidance and support of many incredible individuals and institutions.

First, I want to thank Tilak Singh for introducing me to both academic
and industrial research, which essentially set me on the path to pursue a
doctoral degree. His encouragement provided my with the foundation for my
academic aspirations, but also led me to an amazing experience at Mitsubishi
FUSO in Japan.

I am deeply thankful to my supervisor Jörn Müller-Quade and the “Cryp-
tography and Security” research group. Your unwavering support, open-
mindedness in discussions and guidance made this a wonderful experience.
A special mention to Robin Berger and Michael Klooß for dedicating their
time to proofreading parts of my thesis. I am also grateful to Thorsten
Strufe for providing guidance on all kinds of meta-level questions that arose
throughout this journey, and the “Privacy and Security” group for organizing
game-nights and bringing some life to the corridor. Another special men-
tion to Simon Hanisch, for building a wind turbine with me and providing
delicious honey (what are you feeding those bees?!).

Thanks to the COSIC research group, particularly Jan-Pieter D’Anvers and
Alan Szepiniez for their insight and assistance during my time in Leuven and
the early stages of my doctoral studies. Thanks to the Helmholtz Data Science
Academy for enabling my work with the German Aerospace Center (DLR),
specifically Nils Mäurer, for welcoming me to the team at DLR and fostering
collaboration. A special acknowledgement to Michele Mosca, Mitacs and the
DAAD for granting me the incredible opportunity to visit (and hosting me
at) the Institute for Quantum Computing at the University of Waterloo. That
experience significantly enriched my perspective, allowed me to extend my
collaboration, network and further ignited my research endeavors. I extend
my gratitude to Douglas Stebila and Ted (Edward Eaton) for introducing me
to the fascinating world of quantum-annoying’ness, a topic that continues to
inspire and shape my ongoing research. To Nina Bindel, Fernando Virdia,
and Xavier Bonnetain, thank you for guiding me through the challenging
yet rewarding work on lattice enumeration over nearly two years. Despite
the many setbacks, the journey was fruitful and transformative. A special
mention to Nina for your supervision and support, both in Canada and
beyond, which have been invaluable.

A heartfelt thanks to my family and my partner, for your ongoing support
and encouragement, not only through this thesis, but throughout my whole
life (so far). I cannot thank you enough for standing by me through the highs
and lows of my journey. Special mention to Chrystalla Paleshi for constantly
helping me to improve my English. A warm thanks to Julian Herr for ongoing
technical support and fantastic discussions.

Lastly, I am profoundly grateful to all those who have contributed indi-
rectly (and unknowingly, possibly even unwillingly) to this thesis, such as

iii

iv

everyone who generously shares templates online and to the Stack Exchange
community for their ever-helpful advice in resolving LaTeX issues. To all
who have walked this journey with me, directly or indirectly, thank you for
your support, inspiration, and belief in me.

Costing Adversaries on
Quantum-secure Cryptography

Dissertation Thesis

Kevin Marcel Tiepelt

January 2025

Submitted in partial fulfillment of the requirements
for the degree of Doktor der Naturwissenschaften (Dr. rer. nat.)

to the

Department of Informatics
at Karlsruhe Institute of Technology

1st Reviewer Prof. Dr. Jörn Müller-Quade
2nd Reviewer Prof. Dr. Douglas Stebila
3rd Reviewer Prof. Dr. Daniel Loebenberger

Abstract

Technological advancement in the 21st century, such as quantum computers,
may pose a significant threat to the security of digital information. At the
forefront of security stands cryptography, which is, in 2024, an integral com-
ponent of almost every electronic device, ensuring the security of information
at rest, in use, or in motion.

While quantum computers hold the potential of being able to solve com-
plex problems for science, they also pose a significant risk to the cryptographic
schemes in use right now. This is because quantum computing may offer a
substantial increase in computational power, having the potential to break
cryptographic protocols that are (believed to be) secure when attacked with
conventional computers.

Consequently, quantum-secure cryptographic protocols may become es-
sential in the near future, necessitating immediate efforts towards standard-
ization to ensure preparedness. The National Institute of Standards and
Technology (NIST) initiated a public competition to identify viable quantum-
secure cryptographic algorithms. It is important to recognize, that new
cryptographic schemes often come with significant flaws. As such a public
evaluation of protocols — following Kerckhoffs’s principle, which advocates
that the security should solely depend on the secrecy of the key— is essential.
The flaws that can be found in cryptographic protocols range from bugs in
the implementation, over side-channel attacks to cases where the underlying
computationally hard problem is not as difficult as expected. It is necessary,
to conduct a thorough analysis of these schemes to identify and address these
flaws, ensuring robust and secure cryptographic protocols for the future.

This thesis provides insight into the real-world security of quantum-
secure protocols proposed in the NIST post-quantum competition and beyond.
Furthermore, we review what security properties can be achieved if secure
post-quantum schemes exist, and what security guarantees may remain even
without any quantum-secure hardness assumption.

Our first contribution is the analysis of three candidates of the NIST com-
petition, their implementations and their underlying hardness assumptions.
More specifically, we provide a novel attack that exploits decryption failures
in Mersenne-based cryptography, which is applicable to two candidates from
the first round of the NIST competition. We provide an implementation of
our attack on one of these cryptosystems and show how an attacker can
retrieve the secret key. Finally, we identify an attackers abilities to forge
universal signatures in the hash-based signature scheme SPHINCS+, which
was analyzed as a round three candidate and a finalist to the competition in
2022. We analyze the concrete cost to mount an attack on a fault tolerant
quantum computer. Subsequently, we investigate lower bounds on the cost
of performing quantum lattice enumeration and report how our findings
impact the security of Kyber, a lattice-based finalist in the NIST competition.
We support our results with experiments and implementations that allow to
reproduce our results, and to apply our methodology to estimate the cost of
related cryptographic schemes. vii

viii

Our second contribution quantifies the security of key agreement proto-
cols against quantum-attackers. We review the security of LDACS, a ground-
to-air communication protocol under standardization by the International
Civil Aviation Organization. The analysis focuses on the security properties
that LDACS can achieve in a post-quantum world with the deployed mutual
authenticated key exchange. Particularly, we answer the question which
security properties are achieved, when LDACS is instantiated with any post-
quantum secure key encapsulation mechanism, for instance, any of the NIST
post-quantum finalists. Finally, we explore what security one may achieve in
the setting of password authenticated key exchange (PAKE) without a post-
quantum hardness assumption, in a world were quantum computing is still
expensive. In this setting one can perform a quantum-annoying PAKE, which
means, that the adversarial cost can be scaled with the size of a password
space. We are the first to show how an asymmetric PAKE can be enhanced to
provide quantum-annoying security on top of its conventional computational
security.

Zusammenfassung

Technische Neuerungen des 21. Jahrhunderts, wie beispielsweise Quanten-
computer, stellen eine immer größere Herausforderung für die Sicherheit in
der Informationstechnik dar. Eine tragende Rolle spielt dabei Kryptographie,
welche heutzutage ein integraler Bestandteil von fast jedem elektronischen
Produkt ist.

Während Quantencomputer komplexe Probleme in der Wissenschaft
lösen könnten, stellen sie auch ein erhebliches Risiko für die derzeit verwen-
deten kryptografischen Verfahren dar. Das liegt daran, dass mit der neuen
Technologie eine bis dahin unerreichte Rechenleistung zur Verfügung stehen
könnte, und damit die Gefahr, dass kryptographische Protokolle gebrochen
werden.

Folglich könnten Quanten-sichere kryptografische Methoden in na-
her Zukunft eine wichtige Rollen spielen. Eine Standardisierung solcher
Verfahren sollte zu dem Zeitpunkt, dass sie gebraucht werden, bereits
abgeschlossen sein. Daher sollten Anstrengungen zur Standardisierung
bereits heute angestrebt werden. Das “National Institute of Standards and
Technology” (NIST) in den USA führt derzeit einen öffentlichen Wettbewerb
mit dem Ziel, praktikable Quanten-sichere kryptografische Algorithmen zu
finden. Eine öffentliche Evaluierung von Protokollen — nach dem Kerck-
hoff’schen Prinzip, das besagt, dass die Sicherheit allein von der Geheimhal-
tung des Schlüssels abhängt — ist unerlässlich. Die Schwachstellen, die
in kryptographischen Protokollen gefunden werden können, reichen von
Fehlern in der Implementierung über Seitenkanal-Angriffe bis dahin, dass
das zugrundeliegende, komplexitätstheoretische Probleme nicht so schwierig
zu lösen ist wie erwartet. Daher ist es ist notwendig, eine gründliche Analyse
dieser Verfahren durchzuführen, um diese Schwachstellen zu ermitteln und
zu beheben und die Robustheit und Verfügbarkeit sicherer kryptographischer
Protokolle für die Zukunft zu gewährleisten.

Diese Arbeit gibt einen Einblick in die (reale) Sicherheit der Quanten-
sicheren Protokollen im Rahmen des NIST Post-Quantum-Wettbewerbs,
sowie darüber hinaus. Es wird untersucht, welche Sicherheit erreicht wer-
den kann, unter der Annahme, dass Post-Quanten Verfahren existieren,
und welche Sicherheitsgarantien auch ohne Quanten-sichere Kryptographie
gelten.

Der erste Teil der Ergebnisse dieser Arbeit befassen sich mit der Analyse
verschiedener Kandidaten des NIST Post-Quanten Wettbewerbs. Wir stellen
einen neuartigen Angriff auf Basis von Entschlüsselungs-Fehlern in Mersenne-
basierten Kryptosystemen vor, welche als Kandidaten in der ersten Runde
des Wettbewerbs vertreten waren. Weiter analysieren wir die Fähigkeit eines
Angreifers beliebige Signaturen des SPHINCS+-Verfahrens zu fälschen. Das
SPHINCS+ Signaturverfahren ist einer der Finalisten des NIST Wettbewerbs.
Unser dritter Beitrag ist die Analyse von Gitter-Enumeration auf einem Quan-
tencomputer. Mit unserem neuen Algorithmus können die Angreifer-kosten
anhand verschiedener Metriken quantifiziert werden, welches eine untere-
und obere Abschätzung der Sicherheitsmarge ermöglicht. ix

x

Im zweiten Teil dieser Arbeit quantifizieren wir die Sicherheit von
Schlüsseltransport-Protokollen gegen Quantenangreifer. Wir überprüfen
die Sicherheit von LDACS, einem Boden-Luft-Kommunikationsprotokoll, das
derzeit von der Internationalen Zivilluftfahrtorganisation standardisiert wird.
Die Analyse konzentriert sich auf die Sicherheitseigenschaften, die LDACS in
einer Post-Quantum-Welt mit dem eingesetzten authentifizierten Schlüs-
selaustausch erreichen kann. Insbesondere beantworten wir die Frage,
welche Sicherheit erreicht wird, wenn LDACS mit einem Post-Quantum-
Schlüsseltransportverfahren instanziiert wird, zum Beispiel mit einem der
den NIST Post-Quantum-Finalisten. Schließlich untersuchen wir, welche
Sicherheit man in Passwort-authentifiziertem Schlüsselaustausch erreichen
kann, ohne Post-Quantum Annahmen zu treffen, sofern die Anwendung von
Quantencomputern kostenintensiv ist.

Publications ·

The following publications are outcomes of my doctoral research.

[BT21] Robin M. Berger and Marcel Tiepelt. “On Forging SPHINCS+-Haraka Signatures on a Fault-Tolerant
Quantum Computer”. In: Progress in Cryptology - LATINCRYPT 2021 - 7th International Conference on
Cryptology and Information Security in Latin America, Bogotá, Colombia, October 6-8, 2021, Proceedings. Ed.
by Patrick Longa and Carla Ràfols. Vol. 12912. Lecture Notes in Computer Science. Springer, 2021, pp. 44–
63. doi: 10.1007/978-3-030-88238-9_3. url: https://doi.org/10.1007/978-3-030-88238-9_3.

[Bin+24] Nina Bindel, Xavier Bonnetain, Marcel Tiepelt, and Fernando Virdia. “Quantum Lattice Enumeration in
Limited Depth”. In: Advances in Cryptology – CRYPTO 2024. Ed. by Leonid Reyzin and Douglas Stebila.
Cham: Springer Nature Switzerland, 2024, pp. 72–106. isbn: 978-3-031-68391-6. doi: 10.1007/978-3-
031-68391-6_3. url: https://doi.org/10.1007/978-3-031-68391-6_3.

[Boe+21] Franziska Boenisch, Reinhard Munz, Marcel Tiepelt, Simon Hanisch, Christiane Kuhn, and Paul Francis.
“Side-Channel Attacks on Query-Based Data Anonymization”. In: Proceedings of the 2021 ACM SIGSAC
Conference on Computer and Communications Security. CCS ’21. Virtual Event, Republic of Korea: Association
for Computing Machinery, 2021, pp. 1254–1265. isbn: 9781450384544. doi: 10.1145/3460120.3484751.
url: https://doi.org/10.1145/3460120.3484751.

[DAn+19] Jan-Pieter D’Anvers, Marcel Tiepelt, Frederik Vercauteren, and Ingrid Verbauwhede. “Timing Attacks
on Error Correcting Codes in Post-Quantum Schemes”. In: Proceedings of ACM Workshop on Theory of
Implementation Security, TIS at CCS 2019, London, UK, November 11, 2019. Ed. by Begül Bilgin, Svetla
Petkova-Nikova, and Vincent Rijmen. ACM, 2019, pp. 2–9. doi: 10 . 1145 / 3338467 . 3358948. url:
https://doi.org/10.1145/3338467.3358948.

[Mäu+21] Nils Mäurer, Thomas Gräupl, Christoph Gentsch, Tobias Guggemos, Marcel Tiepelt, Corinna Schmitt, and
Gabi Dreo Rodosek. “A Secure Cell-Attachment Procedure of LDACS”. In: IEEE European Symposium on
Security and Privacy Workshops, EuroS&P 2021, Vienna, Austria, September 6-10, 2021. IEEE, 2021, pp. 113–
122. doi: 10.1109/EuroSPW54576.2021.00019. url: https://doi.org/10.1109/EuroSPW54576.
2021.00019.

[TD20] Marcel Tiepelt and Jan-Pieter D’Anvers. “Exploiting Decryption Failures in Mersenne Number Cryptosys-
tems”. In: Proceedings of the 7th on ASIA Public-Key Cryptography Workshop, APKC at AsiaCCS 2020,
Taipei, Taiwan, October 6, 2020. Ed. by Keita Emura and Naoto Yanai. ACM, 2020, pp. 45–54. doi:
10.1145/3384940.3388957. url: https://doi.org/10.1145/3384940.3388957.

[TES23] Marcel Tiepelt, Edward Eaton, and Douglas Stebila. “Making an Asymmetric PAKE Quantum-Annoying by
Hiding Group Elements”. In: Computer Security - ESORICS 2023 - 28th European Symposium on Research in
Computer Security, The Hague, The Netherlands, September 25-29, 2023, Proceedings, Part I. Ed. by Gene
Tsudik, Mauro Conti, Kaitai Liang, and Georgios Smaragdakis. Vol. 14344. Lecture Notes in Computer
Science. Springer, 2023, pp. 168–188. doi: 10.1007/978-3-031-50594-2_9. url: https://doi.org/
10.1007/978-3-031-50594-2_9.

[TMM24] Marcel Tiepelt, Christian Martin, and Nils Mäurer. “Post-Quantum Ready Key Agreement for Aviation”. In:
IACR Communications in Cryptology 1.1 (Apr. 9, 2024). issn: 3006-5496. doi: 10.62056/aebn2isfg. url:
https://doi.org/10.62056/aebn2isfg.

[TS19] Marcel Tiepelt and Alan Szepieniec. “Quantum LLL with an Application to Mersenne Number Cryptosys-
tems”. In: Progress in Cryptology – LATINCRYPT 2019. Ed. by Peter Schwabe and Nicolas Thériault. Cham:
Springer International Publishing, 2019, pp. 3–23. isbn: 978-3-030-30530-7. doi: 10.1007/978-3-030-
30530-7_1. url: https://doi.org/10.1007/978-3-030-30530-7_1.

xi

https://orcid.org/0000-0002-3389-208X
https://doi.org/10.1007/978-3-030-88238-9_3
https://doi.org/10.1007/978-3-030-88238-9_3
https://doi.org/10.1007/978-3-031-68391-6_3
https://doi.org/10.1007/978-3-031-68391-6_3
https://doi.org/10.1007/978-3-031-68391-6_3
https://doi.org/10.1145/3460120.3484751
https://doi.org/10.1145/3460120.3484751
https://doi.org/10.1145/3338467.3358948
https://doi.org/10.1145/3338467.3358948
https://doi.org/10.1109/EuroSPW54576.2021.00019
https://doi.org/10.1109/EuroSPW54576.2021.00019
https://doi.org/10.1109/EuroSPW54576.2021.00019
https://doi.org/10.1145/3384940.3388957
https://doi.org/10.1145/3384940.3388957
https://doi.org/10.1007/978-3-031-50594-2_9
https://doi.org/10.1007/978-3-031-50594-2_9
https://doi.org/10.1007/978-3-031-50594-2_9
https://doi.org/10.62056/aebn2isfg
https://doi.org/10.62056/aebn2isfg
https://doi.org/10.1007/978-3-030-30530-7_1
https://doi.org/10.1007/978-3-030-30530-7_1
https://doi.org/10.1007/978-3-030-30530-7_1

Open-Access Versions

I am grateful to ePrint, arXiv and the cryptographic community who continuously provide free access to knowledge. The
following are the available open access versions of my publications.

[BT21] Robin M. Berger and Marcel Tiepelt. On Forging SPHINCS+-Haraka Signatures on a Fault-tolerant Quantum
Computer. Cryptology ePrint Archive, Paper 2021/1484. https://eprint.iacr.org/2021/1484. 2021.
doi: 10.1007/978-3-030-88238-9_3. url: https://eprint.iacr.org/2021/1484.

[Bin+23] Nina Bindel, Xavier Bonnetain, Marcel Tiepelt, and Fernando Virdia. Quantum Lattice Enumeration in
Limited Depth. Cryptology ePrint Archive, Paper 2023/1423. https://eprint.iacr.org/2023/1423.
2023. url: https://eprint.iacr.org/2023/1423.

[DAn+19] Jan-Pieter D’Anvers, Marcel Tiepelt, Frederik Vercauteren, and Ingrid Verbauwhede. Timing attacks on
Error Correcting Codes in Post-Quantum Schemes. Cryptology ePrint Archive, Paper 2019/292. https:
//eprint.iacr.org/2019/292. 2019. url: https://eprint.iacr.org/2019/292.

[Mäu+21] Nils Mäurer, Thomas Gräupl, Christoph Gentsch, Tobias Guggemos, Marcel Tiepelt, Corinna Schmitt, and
Gabi Dreo Rodosek. “A Secure Cell-Attachment Procedure of LDACS”. In: IEEE European Symposium on
Security and Privacy Workshops, EuroS&P 2021, Vienna, Austria, September 6-10, 2021. IEEE, 2021, pp. 113–
122. url: https://elib.dlr.de/142721/1/2021___SRCNAS___A_Secure_Cell_Attachment_
Procedure_of_LDACS.pdf.

[TD20] Marcel Tiepelt and Jan-Pieter D’Anvers. Exploiting Decryption Failures in Mersenne Number Cryptosystems.
Cryptology ePrint Archive, Paper 2020/367. https://eprint.iacr.org/2020/367. 2020. doi: 10.
1145/3384940.3388957. url: https://eprint.iacr.org/2020/367.

[TES23] Marcel Tiepelt, Edward Eaton, and Douglas Stebila. Making an Asymmetric PAKE Quantum-Annoying by
Hiding Group Elements. Cryptology ePrint Archive, Paper 2023/1513. https://eprint.iacr.org/2023/
1513. 2023. doi: 10.1007/978-3-031-50594-2_9. url: https://eprint.iacr.org/2023/1513.

[TMM24] Marcel Tiepelt, Christian Martin, and Nils Maeurer. Post-Quantum Ready Key Agreement for Aviation.
Cryptology ePrint Archive, Paper 2024/1096. https://eprint.iacr.org/2024/1096. 2024. doi:
10.62056/aebn2isfg. url: https://eprint.iacr.org/2024/1096.

[TS19] Marcel Tiepelt and Alan Szepieniec. Quantum LLL with an Application to Mersenne Number Cryptosystems.
Cryptology ePrint Archive, Paper 2019/1027. https://eprint.iacr.org/2019/1027. 2019. doi:
10.1007/978-3-030-30530-7_1. url: https://eprint.iacr.org/2019/1027.

xiii

https://eprint.iacr.org/2021/1484
https://doi.org/10.1007/978-3-030-88238-9_3
https://eprint.iacr.org/2021/1484
https://eprint.iacr.org/2023/1423
https://eprint.iacr.org/2023/1423
https://eprint.iacr.org/2019/292
https://eprint.iacr.org/2019/292
https://eprint.iacr.org/2019/292
https://elib.dlr.de/142721/1/2021___SRCNAS___A_Secure_Cell_Attachment_Procedure_of_LDACS.pdf
https://elib.dlr.de/142721/1/2021___SRCNAS___A_Secure_Cell_Attachment_Procedure_of_LDACS.pdf
https://eprint.iacr.org/2020/367
https://doi.org/10.1145/3384940.3388957
https://doi.org/10.1145/3384940.3388957
https://eprint.iacr.org/2020/367
https://eprint.iacr.org/2023/1513
https://eprint.iacr.org/2023/1513
https://doi.org/10.1007/978-3-031-50594-2_9
https://eprint.iacr.org/2023/1513
https://eprint.iacr.org/2024/1096
https://doi.org/10.62056/aebn2isfg
https://eprint.iacr.org/2024/1096
https://eprint.iacr.org/2019/1027
https://doi.org/10.1007/978-3-030-30530-7_1
https://eprint.iacr.org/2019/1027

Contents

ABSTRACT vii

PUBLICATIONS xi

CONTENTS xvi

I QUESTIONS & ANSWERS 1

1 motivation and contribution 3
1.1 The Why . 3
1.2 The What — Research Questions 7
1.3 The How — Results and Publications 9
1.4 Other Hows — Other Publications 15

2 foundations 17
2.1 Notation . 17
2.2 Cryptographic Components and Security Notions 18

II COSTING ADVERSARIES ON POST-QUANTUM CRYPTOGRAPHY 25

summary 27

3 quantum algorithms and cost models 31
3.1 Quantum Computing . 31
3.2 Classical Cost Model . 37
3.3 Quantum Cost Model . 38
3.4 NIST Security Framework 44

4 post-quantum cryptography 47
4.1 Mersenne number based Cryptography 47
4.2 Hash-based Cryptography . 51
4.3 Lattice-based Cryptography 59

5 exploiting decryption failures 65
5.1 Decryption Failures in Mersenne-based Submissions to NIST . 67
5.2 Failure attack . 68
5.3 Attack on Ramstake . 71

6 on the cost of universal signature forgery in sphincs+ 83
6.1 On the Fault-Tolerant Cost of Computing a Second Preimage . 84
6.2 Universal Signature Forgeries in SPHINCS+ 88
6.3 Quantum Circuit Gate Cost 98
6.4 Fault-Tolerant Resource Estimation 99

7 the cost of quantum lattice enumeration 105
7.1 Estimating the Cost of Quantum Enumeration 107

xv

contents xvi

7.2 Instantiations for the Quantum OperatorW 120
7.3 Estimating Quantum Enumeration Attacks on Kyber 124

conclusion 135

III QUANTUM-SECURE PROTOCOLS 137

summary 139

8 security models for authenticated key exchange 143
8.1 Computational Security Model 143
8.2 Predicates for Authenticated Key Exchange 146
8.3 Security of Password Authenticated Key Exchange 148
8.4 Quantum Annoying-ness in the Generic Group Model. . . . 150

9 post-quantum-ready authenticated key agreement 155
9.1 A Simplified LDACS Protocol 159
9.2 Computational Proof . 163
9.3 Symbolic Security . 170

10 making an asymmetric pake quantum-annoying 175
10.1 Quantum Annoying KHAPE-HMQV 177
10.2 Security Framework: The KHAPECORE Game 179
10.3 Proof of aPAKE Security . 185

conclusion 191

BIBLIOGRAPHY 193

ACRONYMS 207

LIST OF FIGURES 210

LIST OF TABLES 211

IV APPENDIX 213

a complete results of decryption failure attack 215

b further results for quantum enumeration 217
B.1 Results from Lower Bounds 217
B.2 Results beyond Lower Bounds 226

Part I

QUESTIONS & ANSWERS

[Ali21] Alighieri, Divine Comedy

1
Motivation and Contribution:
The Why, the What and the How

1.1 the why

An Ideal World. Imagine an ideal world where every person, every being,
would be able to live a happy, fulfilling, and meaningful life. We could live
in harmony with nature, build great cities, or live in peace and quiet on our
own. Everyone would be free and could dedicate their mind, spirit and body
to whatever brings them joy. Society might be united with a common goal,
such as exploring the universe, to discover endless knowledge or to thrive
beyond our current realm of understanding. We might also have just found
the answer to every question. Now we can sit back, enjoy the pleasure of
having achieved everything and watch the stars.

In such an ideal world, there would be no need for sins, no greed, wrath,
violence, fraud or treachery, (as inspired by [Ali21]). No rules to counter such
behavior would need to be agreed on, or enforced, neither by a government
nor by any individuals.

A Real World. But we do not live in an ideal world. Our daily lives are
shaped by mistrust and suspicion, even if we are not aware of such feelings;
we just believe that we are in a happy place. We do not hesitate to inflict
harm onto others to enforce our agenda. We lock our doors in fear that
someone could enter our homes, we invent sophisticated methods to protect
ourselves and everything that we believe is ours, both in the physical and
digital world. We certainly do not live in an ideal world...

A Necessary Evil. While we may not live — or be able to build — an ideal
world, we strive to create one. Throughout history, humanity has constantly
shaped and reshaped the world according to each person’s own perception of
an ideal world. Our society has come up with rules to facilitate a somewhat
peaceful community, giving everyone more or less clear explanation and
expectations what they can or cannot do to live in the society.

Over the past millennia, humanity has devised a multitude of protective
measures, that grant us the illusion of living in an ideal world, and to live a
free and happy life within the confines of our society. These measure might
be clearly visible, such as the locks that we use on our doors every day, or
may be covert, operating beneath the radar of the common observer.

3

the why 4

[LC96] Lo and Chau, Why quantum bit com-
mitment and ideal quantum coin tossing are
impossible

[May97] Mayers, “Unconditionally Secure
Quantum Bit Commitment is Impossible”

[Ken99] Kent, “Unconditionally Secure Bit
Commitment”

One such covert protective measure is cryptography, which is a necessary
evil in maintaining the security and stability of our ever expanding digital
world. On the one hand side, cryptography is an invaluable tool that enables
us to secure our most personal information, but at the same time, imposes a
limit to what we can do if we want to rely on the security it provides. It is
pervasive in modern society, found on nearly every website, every electronic
device and every communication channel. Its use is ubiquitous, from private
conversations with loved ones, to ordering cheese-crust pizza. Cryptography
presents an precious tool for overcoming mistrust and protecting individuals
from those, that fail to follow the rules that are essential to maintaining
harmony in our community.

Opportunities and Limitations. Cryptography is not just a protective
measure, it is also a fascinating science. Cryptography demonstrates that
perfect security is possible, for example, when using a one-time pad. At the
same time, that sometimes perfect security is impossible [LC96; May97],
or at least not feasible [Ken99] with our current state of technology. That
means, to secure most valuable secrets we often have to compromise between
sufficient security and practicability, as both might not be achievable with
cryptography at the same time.

The cryptographers’ daily work is to develop methods that allow for
the safeguarding of information to ensure the confidentiality, authenticity,
and integrity of information, whether it is in motion or at rest. In order to
quantify what we consider sufficient security, we express a cost to break said
security in terms such as time, space, or even tangible expenses such as
monetary resources. In doing so, we endeavor to establish security measures
against a spectrum of adversaries, each with varying capabilities. The
rationale for this quantification is the hope of the existence of mathematical
puzzles that can be utilized to secure communication, but which cannot
be solved by an attacker in reasonable time. In the event that such puzzles
indeed exist, it creates the opportunity to establish security relative to the
scale and complexity of solving such puzzles.

Asymptotic vs. Concrete Security The protection gained from the hy-
pothetical difficulty of solving such puzzles is commonly refereed to as
asymptotic security, where an adversaries’ resources are quantified relative
to the size of the puzzle. Cryptographic schemes proven secure in this model
are secure, if the latter is sufficiently large. When we talk about asymptotic
security, we commonly use the big-O notation, i. e., O(n), where the O
means, roughly, that we ignore any constant and polynomial factors that are
not expressed in the variable n. Proving security in such a model is desirable,
because it allows us to abstract from a specific machine model or concrete
physical implementation to a generic computational model. That means, that
security relies on the number of fundamental computational steps relative
to the parameter n that are required to compute some algorithm, rather
than on the number of CPU cycles for a concrete architecture. This has the
benefit that small improvements in technology (e. g., a faster multiplication
algorithm) do not affect the asymptotic security of a scheme. At the same

the why 5

Alice Bobencrypt decrypt

public key secret key

M c M

(a) Public-key encryption.

Alice Bobencrypt decrypt

secret key secret key

M c M

(b) Secret-key encryption.

Figure 1.1: Enc- and decryption with
plaintext M and ciphertext c.

time, this might also result in an underestimation of the security, if each of
the fundamental computational steps already imposes a significant cost.

Security is commonly expressed as bit-security, meaning that if a puzzle
provides n bits of security, then any adversary should requireO(2n) resources
to solve the puzzle. Constructing the puzzle on the other side should be
possible using only O(n) resources. This notion has the benefit of making it
relatively simple to compare classes of puzzles that are equally difficult to
solve. On the other side, asymptotic security may not be satisfactory, unless
one is convinced that the factors in cost that we ignored are sufficiently small,
or that the puzzle can easily be scaled to a point, where the ignored factors
become sufficiently small, but the cost of whoever set-up the puzzle is still
small enough.

In concrete security there are commonly three security margins, namely
128, 192 and 256 bits of security. Taking, for instance, 128 bits, this means
that we want any adversary to spend at least 2128 resources on breaking our
puzzles, or otherwise, only succeeds with a very low probability, while setting
up the puzzle requires to invest only about 128 resources. This is motivated
by the idea that, for example, if an adversary would allocate resources in the
form of 2128 microseconds of computation to solve the puzzle, they would
be busy about 2109 years. However, the known universe is only about 234

years old, suggesting that most adversaries will have retired from their evil
mission long before solving the puzzle.

Cryptographic schemes are usually proven to be secure in an asymptotic
realm, providing security if the underlying puzzle is scaled sufficiently. In
order to provide a concrete security the most one can do is to take the
algorithm most well-known to humankind to solve the puzzle, and estimate
how many resources this algorithm takes. While we can always scale our
puzzles to make them more difficult to solve, this incurs a higher cost for the
person who sets them up. As such, we want the smallest puzzle that still
provides sufficient security. Exploring the gap between the promise from
asymptotic security and quantifying the concrete cost an adversary expends
to solve such puzzles, thus ensuring that we scale our puzzle sufficiently,
brings us one step closer to a real-world that is indistinguishable — at least
for an ignorant observer — from an ideal world.

Cryptographic Puzzles. Cryptography has a vast field of applications,
the most simple of which are encryption, i. e., locking information into a
digital strongbox using a digital key, and authentication, which provides the
means to prove that a message send by a certain party was not modified.

In this setting we distinguish between asymmetric or public-key cryp-
tography, and symmetric or secret-key cryptography. In the former, one
communication party construct a public-key secret-key pair, publishes the
public key and keeps the secret key private. Anyone who has access to the
public key can now use this to provide some form of secure communication to
the party that has the secret key, for example public-key encryption as in Fig-
ure 1.1(a). In secret-key setting, both communication partners need to share
the same secret key, for example as in secret-key encryption in Figure 1.1(b).
While secret-key cryptography is usually much more efficient in practice,

the why 6

1In 2019, researchers at Google claimed
to have achieved quantum supremacy, after
having computed a task where “the equiva-
lent task for a state-of-the-art classical super-
computer would take approximately 10,000
years” [Aru+19]. Shortly after that, still in
2019, IBM published a study which claimed
that the “ideal simulation of the same task
can be performed on a classical system in 2.5
days and with far greater fidelity” [IBM19].
In 2023, an anonymous author submitted
a paper that claimed to have run Google’s
quantum supremacy task on a Commodore
64 [Ano24], a 40 year old computer.

2If an adversary is given quantum access do
a decryption oracle some symmetric schemes
become vulnerable to Simon’s algorithm.
These are known as Superposition attacks.
However, such a security model is highly
controversial, if not even questionable.

[Jaq+20] Jaques et al., “Implementing
Grover Oracles for Quantum Key Search on
AES and LowMC”

it raises the problem of distributing the keys between the communicating
parties, a task that can be achieved securely with asymmetric cryptography.

A cryptographic puzzle may then be defined as the difficulty to find this
secret key, given only the public key as input. The security of the crypto-
graphic scheme can then be quantified relative to the difficulty to solve this
puzzle. With this view on security the underlying cryptographic scheme is
secure under the assumption that no one can solve the puzzle efficiently.

1.1.1 Solving Puzzles

The computer has undergone a significant development in the past century,
starting at room-sized machines that require a complete team of operators, to
nail-sized machines that function nearly autonomously. As the size decreased,
the computational power increased exponentially for a while, allowing us to
solve puzzles that were previously thought to be infeasible to compute for
humanity.

The 21st century has even led to the emergence of a potential new type
of computer: the quantum computer. At its core, a quantum computer
operates very similarly to a conventional computer. It applies an algorithm
to a given input and provides an output, or runs for eternity. In contrast
to a conventional computer, however, it can take advantage of quantum
mechanics, one of the two theories (along with general relativity) that most
closely explain our planet, our universe and our very existence. Briefly
speaking quantum mechanics explains how individual particles behave and
how they evolve over time. It reveals that particles can exists in multiples
states at once, called a superposition, and how these states interact with
each other to become entangled. While quantum computing can harness the
power that comes with these properties, they are also limited by the very
same.

Since the initial conception of quantum computing in the 1980s, tech-
nology has come a long way and yet it seems to be a formidable challenge
to build such a device that is useful outside of a laboratory. At the time of
writing, in 2024, there is no public evidence1 of a quantum computer that
outperforms conventional computers.

A new Threat. While the practical realization of a quantum computer
appears to be challenging, the theoretical model has a simple and complete
description founded on linear algebra. The model of quantum circuits al-
lows to explore the possibilities promised without having to deal with the
problem of constructing a physical computer. This model, which captures
the theoretical opportunities and boundaries of quantum computing, allows
one to construct algorithms that break widely used encryption methods
— implying that quantum computers have the potential to do the same.
Quantum computing not only introduces novel attack strategies on crypto-
graphic schemes, but also turns attacks previously considered unfeasible into
practical computations thanks to its quantum speedup promise.

In the setting of quantum adversaries, the puzzles used in symmetric
cryptography appear largely resistant to quantum attacks, i. e., the best
known quantum-speedup in most practical models2 is at best quadratic,
reducing the security margin from n bits to n/2 bits [Jaq+20].

the what — research questions 7

[Sho94] Shor, “Algorithms for quantum com-
putation: discrete logarithms and factoring”

[GE21] Gidney and Ekerå, “How to factor
2048 bit RSA integers in 8 hours using 20
million noisy qubits”

[Ber+17] Bernstein et al., Post-quantum RSA

[Nat17] National Institute for Standards and
Technology, Post-Quantum Cryptography Call
for Proposals

Figure 1.2: Placement of the power
of quantum computing “BQP” in
complexity theory. “Post-Quantum
Crypto” refers to quantum-secure, “Pre-
Quantum Crypto” to the conventional
secure cryptosystems.

3Proving that a cryptographic scheme is as
difficult to break as solving an NP-compete
problem implies that NP = co-NP [Bra83,
Thm. 2], which is among the biggest open
questions in computer science.

On the other side, many of the puzzles used for asymmetric cryptography
that are in use today are vulnerable to Shor’s algorithm [Sho94; GE21]
which can solve these puzzles exponentially faster than a classical computer.
If somebody were to build a scalable, fault-tolerant quantum computer,
this would mean that currently used cryptography would be insecure, and
scaling the puzzle size to reach the desired security would make the schemes
unpractical, for example, resulting in key-sizes in the magnitude of terabytes
[Ber+17].

Quantum-secure Cryptography The need to develop new, quantum-
secure cryptographic protocols has been recognized by several standardiza-
tion bodies such as the German Federal Office for Information Security (BSI)
and the National Institute for Standards and Technology (NIST) in the United
States of America, the latter of which started a post-quantum standardization
process [Nat17] to select one or more post-quantum replacements for the
current public-key cryptographic primitives. These replacements are based
on computational puzzles, that are believed to be difficult to solve even for
quantum computers – and which can be used to build secure cryptographic
protocols.

The adoption of quantum secure cryptographic schemes comes with
formidable challenges, as this necessitates the overhaul of existing protocols
and the assessment of the security provided by quantum-secure intractability
assumptions, i. e., assumptions that a certain puzzle is difficult to solve even
with quantum computers. The trust in these assumptions often comes from
reductions to other, more general puzzles or computational problems. Say
we have two puzzles, A and B. If one can show that an algorithm that solves
puzzle A can be used to build an algorithm to solve puzzle B, then solving
B cannot be more difficult than solving puzzle A. If one can now provide
evidence that puzzle B is difficult to solve, then one can also assume that A
is difficult to solve.

In the setting of computational complexity, quantum computers can solve
a special set of puzzles located in a class called Bounded Error Quantum
Polynomial Time (BQP) as in Figure 1.2. These problems are defined as
decision problems, meaning that solving the puzzle requires an algorithm to
output “yes” or “no”. The decision problems that conventional deterministic
computers can solve, that coincide with the algorithm that ought to be used
for encryption and decryption, can be thought of as lying in the class “P”.
The problems in the subset “NP-complete” of the class “NP” are believed to
be intractable even for quantum computers. However, it is not known3 if
they can be utilized for cryptography. As such, quantum secure cryptography
is based on puzzles located somewhere “in between”, i. e., puzzles that are
close to an NP-complete problem, but that have been artificially made easier.
We call these puzzles intractability assumptions or hardness assumptions.

1.2 the what — research questions

The concrete difficulty of solving puzzles is often not clear. Embedding these
puzzles into existing cryptographic protocol or constructing new protocols
often entail modifications to cryptographic primitives, which potentially also

the what — research questions 8

introduces new vulnerabilities. As such, there may be a large gap between the
asymptotic hardness of intractability assumptions, and the concrete security
a system provides.

To be confident in a cryptographic protocol we need to be assured, that
it is as least as difficult to break as the intractability assumption, and that
“breaking” this assumption is indeed computationally hard. For the latter,
we want to know:

How difficult is it to solve a computational problem?

For many cases the answer is simple — we do not know for sure. Instead,
the difficulty of solving a problem has been subject to years or decades of
research, trying to find an efficient algorithm to solve the specific problem.
With the tools from complexity theory, i. e., reductions to problems of simi-
lar difficulty, the reasoning that no efficient algorithm exists for a specific
problem can be extended to providing evidence that no efficient algorithm
exists to solve other (possibly more generic) problems.

In a nutshell, the security of classical cryptographic schemes is based on
the assumption that the most well known algorithms require an exponential
amount of resources to solve the problems in question, and it is widely ac-
cepted throughout the cryptographic community that 128-bits of security are
sufficient. With quantum computing emerging, some of these assumptions
have been challenged. Not only do quantum algorithms have the potential to
break well-studied assumptions, but they also enable attacks which formerly
believed to be unpractical. This leads us to our first research question:

Q1 — What are the best classical-quantum attack strategies on
post-quantum cryptography?

The “best” algorithm is often quantified to be the one with the smallest cost.
As such, it is equally important to ask:

Q2 — What is the concrete cost of the best classical-quantum
attacks?

While the asymptotic behavior of quantum computers has been exten-
sively analyzed, the possibilities within these limits, and the practical em-
bodiment remain ambiguous. Naturally, this results in a gap between the
asymptotic cost to break the intractability assumption and the difficulty to
break the cryptographic scheme in practice. Therefore it is necessary to un-
derstand the ability of quantum-algorithms to solve these assumptions. The
goal is to show that the “most well-known algorithm” requires 2X resources
in a computational model as depicted in Figure 1.3. A scheme would than
be considered secure, if 2X is larger than some practical bound, for example,
larger than 2128.

Once we are convinced of the security of a cryptographic scheme, the
next challenge is to embed the new cryptographic protocol into existing,
higher-level protocols, for example, key agreement schemes. This requires
demonstrating that certain security properties hold, for example, then we
can show that peers can be convinced to share a secret key, or convinced

the how — results and publications 9

Computational
problem

+
Most well-known

algorithm

Concrete cost estimation

0 ∞
2X

Cost model
Evidence

Figure 1.3: The concrete cost of solving a computational problem using the “most
well-known algorithm” is shown in a specific cost model and providing some evidence,
for example, an implementation or experiments.

[Nat17] National Institute for Standards and
Technology, Post-Quantum Cryptography Call
for Proposals

that they are communicating with their intended peer. Conversely, if the cost
of quantum computation is prohibitively high, one may ask whether existing
components and schemes that do not provide security against arbitrarily
large quantum computers could be enhanced to make the cost of the attacker
prohibitive once more. This leads to the final research question:

Q3 — What security can we achieve against limited quantum
adversaries?

A limitation on an adversary is potentially imposed on the cost model by
current technology, for example, by considering only quantum circuits that
remain coherent for a limited time, or by allowing the adversary only specific
powers. In the following we review how these questions are addressed in
this manuscript.

1.3 the how — results and publications

In the remaining of Part I, specifically Chapter 2, we introduce standard
notation used throughout this manuscript. Then the research questions
are addressed in two distinct settings: In Part II, we quantify the cost of
adversaries on three candidates of the NIST post-quantum competition. For
each candidate we provide either an attack on the scheme, or evidence,
suggesting that the intractability assumptions are difficult to solve even for
quantum computers. Conversely, in Part III, we review the security that can
be achieved in higher level protocols under the assumption that post-quantum
secure cryptographic primitives exist. We then explore a security level that
can be achieved by strengthening the quantum-security of cryptographic
protocols, that would otherwise be secure against classical computation only.

1.3.1 Part II: Costing Adversaries on Post-Quantum Cryptography

The most prominent quantum-secure cryptosystems are the candidates of
the NIST post-quantum competition [Nat17]. We review the security of
the Mersenne-based Key Encapsulation Mechanism (KEM) Ramstake from
Round 1, the Hash-based signatures schemes SPHINCS+ that was chosen
as a finalist, and the security of the lattice-based finalist Kyber. Table 1.1
summarizes our contributions for each of the candidates.

Before evaluating the security of specific schemes we devote Chapter 3
to a review of cost models and algorithms in the setting of quantum com-
puting. A review of the individual cryptosystems is provided in Chapter 4,

the how — results and publications 10

[Agg+17a] Aggarwal et al., A New Public-Key
Cryptosystem via Mersenne Numbers

[Agg+17b] Aggarwal et al., Mersenne-
756839

[Sze17] Szepieniec, Ramstake

accompanied by an examination of the most well-known attacks on each
cryptographic scheme. Subsequently, we present our analysis of the cryp-
tosystems in question and of their underlying hardness assumptions. For each
such scheme, we either provide evidence that the computational problem
corresponding to the respective assumption is difficult to solve in practice —
or show how the scheme can be broken efficiently.

Table 1.1: Overview of contributions to the public analysis of NIST post-quantum
schemes.

Candidate Impact/ Results Evidence

Ramstake
(1st round)

IND-CCA security broken
+ secret-key extraction

Theoretical analysis,
implementation of attack

SPHINCS+

(3rd round,
finalist)

Improved 2nd preimage attack
+ fault-tolerant cost estimation

Theoretical analysis,
quantum circuit simulation

Kyber
(finalist)

New quantum lattice
enumeration algorithm
+ instantiation barriers

Theoretical analysis,
heuristic experiments,
optimal cost-estimation

Chapter 5. Mersenne-based cryptosystems were first introduced in 2017
[Agg+17a] as single bit encryption scheme and later submitted to the NIST
competition as the Mersenne-756839 [Agg+17b] and the Ramstake [Sze17]
key encapsulation mechanism. The two submissions have a small, but non-
zero probability that a decryption fails, and thus that no key is exchanged.

We develop the, to the best of our knowledge, first method to exploit
these decryption failures in Mersenne number based cryptosystems. These
encryption schemes combine arithmetic modulo a Mersenne prime with error
correcting codes to form a key encapsulation mechanism. The incorporation
of the error correcting codes results in a low, but non-zero, probability that
the decryption fails. In this chapter we show that the information leaked
from such a decryption failure can be used to gain information about the
secret key. We present an attack exploiting this information to break the
Indistinguishability under Chosen Ciphertext Attack (IND-CCA) security
of Ramstake [Sze17], a round one candidate in the NIST post-quantum
competition.
Particularly, our method takes a set of decryption failures and yields a proba-
bility distribution of the secrets. The distribution can be used to significantly
improve the complexity of the most well-known algorithm to solve the under-
lying assumption. This results in an attack that not only breaks the IND-CCA
security, but also extracts the secret keys.

In this collaboration, Jan-Pieter D’Anvers mainly developed a method
based on maximum likelihood estimation to output a distribution of the secret
bit-positions from decryption failures. My contribution was to develop a
method that extracts a set of intervals that contain a one from this distribution,
and to adapt as well as improve the performance of the most well-known
attack using these intervals, enabling to apply a lattice-reduction aided attack.

the how — results and publications 11

[Sze17] Szepieniec, Ramstake

[Hül+20] Hülsing et al., SPHINCS+-
Submission to the 3rd round of the NIST post-
quantum project

[Nat22] National Institute for Standards and
Technology, NIST: Selected Algorithms 2022

[Nat24c] National Institute for Standards
and Technology, FIPS 205

[Amy+16] Amy et al., “Estimating the Cost
of Generic Quantum Pre-image Attacks on
SHA-2 and SHA-3”

We demonstrate the efficacy of our attack by providing an implementation
on a simplified version of the candidate Ramstake [Sze17].

Content Sources

Chapter 5 is based on below publications.
Publication

Marcel Tiepelt and Jan-Pieter D’Anvers. “Exploiting Decryption Failures in Mersenne Number Cryp-
tosystems”. In: Proceedings of the 7th on ASIA Public-Key Cryptography Workshop, APKC at AsiaCCS 2020,
Taipei, Taiwan, October 6, 2020. Ed. by Keita Emura and Naoto Yanai. ACM, 2020, pp. 45–54. doi:
10.1145/3384940.3388957

Open-Access Publication
Marcel Tiepelt and Jan-Pieter D’Anvers. Exploiting Decryption Failures in Mersenne Number Cryptosystems.
Cryptology ePrint Archive, Paper 2020/367. https://eprint.iacr.org/2020/367. 2020. doi:
10.1145/3384940.3388957

Implementation
https://github.com/mtiepelt/ramstake-failure-attack{}

Contribution Equal.

Chapter 6. The SPHINCS+ signature scheme [Hül+20] has been chosen
by the NIST as one of finalists of the post quantum competition [Nat22], and
standardized in August 2024 [Nat24c]. The security of the scheme is based
on the second-preimage resistance of cryptographic hash functions, namely
Haraka, SHA-256 or SHAKE-256. While the cost of computing a generic
preimage of SHA-256 and SHAKE-256 has been analyzed before [Amy+16],
the cost of attacking Haraka remains unknown. The SPHINCS+ signature
scheme is constructed from three distinct signatures schemes: A Winternitz
One Time Signature (WOTS), a Forest of Random Subsets (FORS) and a
eXtended Merle Signature Scheme (XMSS), which are combined in a large
hypertree. A concrete algorithm that allows to compute a universal forgery
for SPHINCS+ remains ambiguous.

We investigate the cost of performing a universal forgery on the signa-
tures from a second preimage in the underlying hash function, and provide
the first analysis of SPHINCS+-Haraka relative to an adversaries’ ability
to find a second preimage in the hash function using quantum amplitude
amplification.

In each individual component, the best point of attack relative to the
cost of the oracle required for quantum amplitude amplification is identified.
Subsequently, we review the concrete cost of performing the attack with the
lowest cost on a fault-tolerant quantum computer, focusing on the SPHINCS+

instantiation that deploys the Haraka hash function. To that end, we use a
Q# implementation that was developed with Robin Berger in his Master’s
Thesis as a baseline for the cost of a quantum oracle of the Haraka hash
function. A detailed cost analysis is then conducted, that takes into consider-
ation the overhead of turning faulty quantum gates and quantum bits into
fault-tolerant logical resources. As a result we obtain a cost estimation of

https://github.com/mtiepelt/ramstake-failure-attack
https://doi.org/10.1145/3384940.3388957
https://eprint.iacr.org/2020/367
https://doi.org/10.1145/3384940.3388957
https://github.com/mtiepelt/ramstake-failure-attack{}
https://github.com/RobinBerger/Grover-Sphincs

the how — results and publications 12

[Nat22] National Institute for Standards and
Technology, NIST: Selected Algorithms 2022

[Nat24a] National Institute for Standards
and Technology, FIPS 203

[Nat24b] National Institute for Standards
and Technology, FIPS 204

[LMv13] Laarhoven, Mosca, and van de Pol,
“Solving the Shortest Vector Problem in Lat-
tices Faster Using Quantum Search”

[Alb+20b] Albrecht et al., “Estimating Quan-
tum Speedups for Lattice Sieves”

[Mon18] Montanaro, “Quantum-Walk
Speedup of Backtracking Algorithms”

[AK17] Ambainis and Kokainis, “Quantum
algorithm for tree size estimation, with appli-
cations to backtracking and 2-player games”

performing a universal forgery of SPHINCS+ on a fault-tolerant quantum
computer, which improves over the cost estimation from previous, generic
attacks on the scheme.

In this collaboration, my contribution was development of the explicit
universal forgery attacks on the SPHINCS+ components in close cooperation
with Robin Berger. For the resource estimation Robin developed most of the
Q# code to perform the logical cost analysis, while my contribution focused
on the optimization in the fault-tolerant regime.

Content Sources

Chapter 6 is based on below publications.
Publication

Robin M. Berger and Marcel Tiepelt. “On Forging SPHINCS+-Haraka Signatures on a Fault-Tolerant
Quantum Computer”. In: Progress in Cryptology - LATINCRYPT 2021 - 7th International Conference on
Cryptology and Information Security in Latin America, Bogotá, Colombia, October 6-8, 2021, Proceedings.
Ed. by Patrick Longa and Carla Ràfols. Vol. 12912. Lecture Notes in Computer Science. Springer, 2021,
pp. 44–63. doi: 10.1007/978-3-030-88238-9_3

Open-Access Publication
Robin M. Berger and Marcel Tiepelt. On Forging SPHINCS+-Haraka Signatures on a Fault-tolerant
Quantum Computer. Cryptology ePrint Archive, Paper 2021/1484. https://eprint.iacr.org/2021/
1484. 2021. doi: 10.1007/978-3-030-88238-9_3

Implementation
https://github.com/RobinBerger/Grover-Sphincs{}

Contribution Equal.

Chapter 7. Three out of four of the candidates selected for standard-
ization by NIST [Nat22] are lattice-based construction, two of which were
standardized in August 2024 [Nat24a; Nat24b]. The most well-known at-
tacks on lattice-based cryptosystems are either based on lattice enumeration,
or lattice sieving. The quantum variant of the latter has been proposed
[LMv13], but also been shown to not be competitive [Alb+20b]. To speedup
lattice enumeration Aono, Nguyen, and Shen proposed to deploy quantum
backtracking algorithms [Mon18; AK17] in an unbounded quantum circuit
model. We explore the cost of quantum lattice enumeration in the setting of
NIST’s MaxDepth, i. e., the limitation of the number of consecutive gates
in any quantum circuits, and propose a parallelization strategy, resulting in
a new classical-quantum enumeration algorithm. We detail the cost based
on various assumption and conjectures, which aim to find meaningful lower
bounds under these restrictions. We apply our estimates to Kyber, a finalist
in the NIST post-quantum competition.

In order to argue that our bounds are meaningful, Fernando Virdia pro-
vided a large amount of lattice-based heuristics, which will not be part of this
thesis. My contribution was, in close collaboration, the design and analysis of
the classical-quantum algorithm and the implementation and optimization
of the resources estimate. Our figures and tables can be reproduced with
our public code.

https://doi.org/10.1007/978-3-030-88238-9_3
https://eprint.iacr.org/2021/1484
https://eprint.iacr.org/2021/1484
https://doi.org/10.1007/978-3-030-88238-9_3
https://github.com/RobinBerger/Grover-Sphincs{}
https://github.com/mtiepelt/QuantumLatticeEnumeration

the how — results and publications 13

Content Sources

Chapter 7 is based on below publications.
Publication

Nina Bindel, Xavier Bonnetain, Marcel Tiepelt, and Fernando Virdia. “Quantum Lattice Enumeration
in Limited Depth”. In: Advances in Cryptology – CRYPTO 2024. Ed. by Leonid Reyzin and Douglas
Stebila. Cham: Springer Nature Switzerland, 2024, pp. 72–106. isbn: 978-3-031-68391-6. doi:
10.1007/978-3-031-68391-6_3

Open-Access Publication
Nina Bindel, Xavier Bonnetain, Marcel Tiepelt, and Fernando Virdia. Quantum Lattice Enumeration in
Limited Depth. Cryptology ePrint Archive, Paper 2023/1423. https://eprint.iacr.org/2023/1423.
2023

Implementation
https://github.com/mtiepelt/QuantumLatticeEnumeration

Contribution Equal.

[SES23] SESAR JU, LDACS A/G Specification,
Edition 01.01.00, Template Edition 02.00.05,
Edition date 25.04.2023

1.3.2 Part III: Quantum-secure Protocols

In the previous Part II we address the question what the concrete cost of an
attacker with a quantum computer is, and it turns out, running quantum-
algorithms in practice appears to be very expensive. This raises the question
what cost asymmetric cryptography, which is based on assumptions that can
be solved in polynomial time in the quantum regime, incurs to an attacker.
Indeed, if quantum computation is very expensive, schemes based on such an
assumption may still provide some security, and may be further strengthened
by providing the ability to scale the computationally cost specifically for
quantum computers.

On the other side, even if post-quantum secure primitives exists and the
cost is well understood, these can often not be readily put into key agreement
schemes. Indeed, asymmetric cryptographic protocols are often not deployed
directly. Instead, key encapsulation mechanisms, public-key encryption and
signature protocols are embedded into higher level key agreement schemes
that combine these primitives to achieve, for example, authenticated key
exchange. If protocols are now based on new primitives not used before,
security proofs may be invalidated. As such, when instantiating a higher
level protocol with a post-quantum scheme, it may not be clear what security
properties remain. In Chapter 8, we first review a security model that allows
us to analyze the security of higher level protocols. Subsequently, we analyze
what security guarantees remains when plugging post-quantum security into
a higher level protocol, and finally what security can be achieved without
post-quantum cryptography.

Chapter 9. The upcoming air-to-ground communication system, LDACS
[SES23], is currently under standardization by the International Civil Avia-
tion Organization. As the system is to remain secure for the coming decades,
the communication must provide security against potential quantum threats.
As part of the standardization, the system deploys a key-encapsulation based

https://doi.org/10.1007/978-3-031-68391-6_3
https://eprint.iacr.org/2023/1423
https://github.com/mtiepelt/QuantumLatticeEnumeration

the how — results and publications 14

variant of the ISO Key Agreement Mechanism 7. While the protocol has been
subject to heuristic security reviews, no formal treatment of the properties
attained has been conducted before. Therefore, we provide the first formal
analysis of the underlying the key agreements protocol and prove that it
achieves various desired security properties against quantum adversaries in
both, a computational and a symbolic model.

My contribution in this collaboration was the setup and adjusting the
formal model. The security proof was conducted in close collaboration with
Christian Martin. Large parts of the proof of BR-Secrecy are consistent with
the results from his Master’s thesis, which are omitted from this manuscript.

Content Sources

Chapter 9 is based on below publications.
Publication

Marcel Tiepelt, Christian Martin, and Nils Mäurer. “Post-Quantum Ready Key Agreement for Aviation”.
In: IACR Communications in Cryptology 1.1 (Apr. 9, 2024). issn: 3006-5496. doi: 10.62056/aebn2isfg

Open-Access Publication
Marcel Tiepelt, Christian Martin, and Nils Maeurer. Post-Quantum Ready Key Agreement for Aviation.
Cryptology ePrint Archive, Paper 2024/1096. https://eprint.iacr.org/2024/1096. 2024. doi:
10.62056/aebn2isfg

Implementation
https://github.com/mtiepelt/ldacs-make-symbolic-tamarin

Contribution Equal.

Chapter 10. Password Authenticated Key Exchange (PAKE) allows a client
to authenticate towards a server using a password, without revealing their
password to either the server or the network. A PAKE protocol promises
that an attacker is reduced to either solving a computational problem, or
performing an online interaction for every password guess. However, the
most efficient PAKEs are based on the discrete logarithm problem which is
susceptible to quantum attacks, allowing an adversary to find the password
after solving a single discrete logarithm. In this work we show how to
augment a password authenticated key exchange protocol using an ideal
cipher to make the protocol quantum annoying — meaning that we can
quantify adversaries probability to find the password based on the number of
discrete logarithms they solve — namely, one for every password guess. This
significantly increases the adversarial cost as long as quantum computation
remains costly. My contribution to this chapter was the augmentation of the
password based protocol, and the design and proof of the quantum-annoying
property.

https://github.com/mtiepelt/ldacs-make-symbolic-tamarin
https://doi.org/10.62056/aebn2isfg
https://eprint.iacr.org/2024/1096
https://doi.org/10.62056/aebn2isfg
https://github.com/mtiepelt/ldacs-make-symbolic-tamarin

other hows — other publications 15

Content Sources

Chapter 10 is based on below publications.
Publication

Marcel Tiepelt, Edward Eaton, and Douglas Stebila. “Making an Asymmetric PAKE Quantum-Annoying
by Hiding Group Elements”. In: Computer Security - ESORICS 2023 - 28th European Symposium on
Research in Computer Security, The Hague, The Netherlands, September 25-29, 2023, Proceedings, Part I.
ed. by Gene Tsudik, Mauro Conti, Kaitai Liang, and Georgios Smaragdakis. Vol. 14344. Lecture Notes in
Computer Science. Springer, 2023, pp. 168–188. doi: 10.1007/978-3-031-50594-2_9

Open-Access Publication
Marcel Tiepelt, Edward Eaton, and Douglas Stebila. Making an Asymmetric PAKE Quantum-Annoying
by Hiding Group Elements. Cryptology ePrint Archive, Paper 2023/1513. https://eprint.iacr.org/
2023/1513. 2023. doi: 10.1007/978-3-031-50594-2_9

Contribution Major.

4Disclosure: We received a bounty for our
attack as part of the aircloak bounty chal-
lenge in 2020. Unfortunately, the corre-
sponding webpage is now offline, making
it impossible to reference it.

1.4 other hows — other publications

The following publications are results of collaborations during the past years
which are not part of this thesis, but mentioned here in the interest of
completeness.

Timing Attack on Error Correcting Codes. We developed timing
attacks on error correcting codes of lattice- and Mersenne-based implementa-
tions of NIST post-quantum candidates, and demonstrate how the resulting
information can be used to break the IND-CCA security of the underlying
schemes. My contribution in this paper was an attack on Ramstake, a round-1
Mersenne-based cryptosystem. The attack can extract bit positions of the
secret keys based on timing variations of the deployed error correcting code.
A complete extraction of the secret is possible within minutes.

• Jan-Pieter D’Anvers, Marcel Tiepelt, Frederik Vercauteren, and Ingrid
Verbauwhede. “Timing Attacks on Error Correcting Codes in Post-
Quantum Schemes”. In: Proceedings of ACM Workshop on Theory of
Implementation Security, TIS at CCS 2019, London, UK, November 11,
2019. Ed. by Begül Bilgin, Svetla Petkova-Nikova, and Vincent Rijmen.
ACM, 2019, pp. 2–9. doi: 10.1145/3338467.3358948

Timing Attack on Privacy Databases. We present a timing attack on
privacy databases, particularly, the Diffix database. My contribution was the
development and implementation of the timing attack against the Diffix proxy,
a privacy preserving database with the promise not to reveal information
about users when queried with SQL statements. We exploit that Diffix
deployed different methods to retrieve data depending on the SQL query
returning some data (slower) or none at all (faster). The cause for this was
discovered only after our attack, which allowed to recover the identity of
users in the database within a few minutes and using a few thousand queries
per user 4.

https://doi.org/10.1007/978-3-031-50594-2_9
https://eprint.iacr.org/2023/1513
https://eprint.iacr.org/2023/1513
https://doi.org/10.1007/978-3-031-50594-2_9
https://doi.org/10.1145/3338467.3358948

other hows — other publications 16

5While this work would fit well into this
manuscript is has some overlap with myMas-
ter’s thesis, making it unsuited to be part of
the dissertation.

[SES23] SESAR JU, LDACS A/G Specification,
Edition 01.01.00, Template Edition 02.00.05,
Edition date 25.04.2023

• Franziska Boenisch, Reinhard Munz, Marcel Tiepelt, Simon Hanisch,
Christiane Kuhn, and Paul Francis. “Side-Channel Attacks on Query-
Based Data Anonymization”. In: Proceedings of the 2021 ACM SIGSAC
Conference on Computer and Communications Security. CCS ’21. Virtual
Event, Republic of Korea: Association for Computing Machinery, 2021,
pp. 1254–1265. isbn: 9781450384544. doi: 10.1145/3460120.
3484751

Quantum LLL. In this paper we offer a design of the famous Lenstra-Lenstra-
Lovász (LLL) lattice reduction algorithm as a quantum circuit, providing an
optimized un-computation schedule, thus minimizing the memory overhead.
We apply our results by estimating the cost of lattice-reduction attacks on
Mersenne-based cryptosystem by giving an upper bound on the Toffoli gates
required to implement the attack. My contribution was modelling and
optimizing the LLL algorithm as a quantum circuit, and estimating the
quantum cost of the Slice-and-Dice attack (cf. Section 4.1.3).

• Marcel Tiepelt and Alan Szepieniec. “Quantum LLL with an Applica-
tion to Mersenne Number Cryptosystems”. In: Progress in Cryptology –
LATINCRYPT 2019. Ed. by Peter Schwabe and Nicolas Thériault. Cham:
Springer International Publishing, 2019, pp. 3–23. isbn: 978-3-030-
30530-7. doi: 10.1007/978-3-030-30530-7_15

Post-Quantum Cryptography for LDACS. In collaboration with Institute
for Communications and Navigation at the German Aerospace Center we
design and tailored a mutual authenticated post-quantum key agreements
protocol to constraint resource environments, i. e., the LDACS [SES23] pro-
tocol for commercial ground-air communication. My contribution was to
design the authenticated key agreement in close collaboration with Nils
Mäurer.

• Nils Mäurer, Thomas Gräupl, Christoph Gentsch, Tobias Guggemos,
Marcel Tiepelt, Corinna Schmitt, and Gabi Dreo Rodosek. “A Secure
Cell-Attachment Procedure of LDACS”. in: IEEE European Symposium
on Security and Privacy Workshops, EuroS&P 2021, Vienna, Austria,
September 6-10, 2021. IEEE, 2021, pp. 113–122. doi: 10.1109/
EuroSPW54576.2021.00019

https://doi.org/10.1145/3460120.3484751
https://doi.org/10.1145/3460120.3484751
https://doi.org/10.1007/978-3-030-30530-7_1
https://doi.org/10.1109/EuroSPW54576.2021.00019
https://doi.org/10.1109/EuroSPW54576.2021.00019

Parts of this chapter have been taken ver-
batim from our publications, i. e., [TD20a;
TD20b; BT21a; BT21b; Bin+24; Bin+23;
TES23b; TES23a; TMM24b; TMM24a].

2
Foundations

2.1 notation

Throughout this manuscript variables and algorithms are defined at a local
level, while maintaining consistent notation across all chapters. This chapter
is devoted to introducing notation as well as cryptographic core components.

Sets {} is an unordered set, [] an ordered set. [x] are the numbers from 1

to x inclusive.

Strings {0, 1}n is a distribution of n-bit strings of the set {0, 1}. If x is
a string, then |x| denotes the length of the string. [x : y] denotes
a substring, including x, excluding y, corresponding to [x, y) in set
notation.

Vectors v⃗ = (v1, v2, ..., vn) is a n-dimensional vector with coefficients vi.
||v|| is the l2-norm of a vector calculated as

√︁∑︁
i v

2
i .

Algebra Z is the set of all integers, N the natural numbers and R respec-
tively all real numbers. Zq is the ring modulo q. For any integer
x ∈ Zp the ith bit of the binary representation will be expressed as
x[i] or in shorthand xi, and the bits in the range from i to, but not
including j, will be written as x[i : j]. The integers in this ring will
sometimes be expressed as a binary string, using the least significant
bit representation in [0, p).

Algorithms and Functions Algorithms are denoted as capital letters, i. e.,
Algorithm. y ← f(x) assigns the value of f(x) to y. The function
x $←− D describes the process of drawing uniformly random values
from the distribution D. x := y means we define x to be y.

Stochastic E[X] is the expected value of the random variable X. P[E] is
the probability of the event E happening.

Quantum ⟨φ||φ⟩ is the bra-ket notation. Quantum states are denoted as
lower case Greek letters |φ⟩ , |ψ⟩ , Registers are upper case letters
|A⟩, single qubits as lower case letters |a⟩. Amplitudes are also denoted
as Greek letters α, β.

Variables Z.a means a is part of Z. For example, if Z = (a, b, c) then we
may write Z.a, Z.b or Z.c.

17

cryptographic components and security notions 18

Cryptography λ is the security parameter, A is the adversary and Af means
that the adversary gets oracle access to a function f . Adv is the advan-
tage that an adversary has to win a security game G.

Asymptotic Notation. In the setting of cryptography the cost of computing
a function in usually expressed relative to the length of the input. This cost
is then set into relation to the security parameter λ. We use the following
asymptotic notation for function f : N→ R+:

f(x) ∈ negl We call a function negligible, if for every a ∈ N there exists
integer y such that f(x) ≤ x−a for all x ≥ y, i. e., it approaches zero
faster than the inverse of any polynomial in the security parameter λ.

f(x) ∈ poly(x) means bounded by a polynomial in x.

f(x) ∈ o(g(x)) A function f grows smaller than g if: ∀c > 0 ∃x0 ∀x > x0

c · |g(x)| > |f(x)|.

f(x) ∈ O(g(x)) The function g(x) is an asymptotic upper bound if ∃c > 0

∃x0 > 0 ∀x > x0 |f(x)| < c · |g(x)|.

f(x) ∈ Ω(g(x)) The function g(x) is an asymptotic lower bound, if ∃c > 0

∀x0 ∃x > x0 c · |g(x)| ≤ |f(x)|.

f(x) ∈ Θ(g(x)) The function g(x) is an asymptotic lower and upper bound,
if f(x) ∈ Θ(g(x))⇔ f(x) ∈ O(g(x)) ∧ f(x) ∈ Ω(g(x)).

X̃ This means that for X all logarithmic factors are ignored, for example Õ.

2.2 cryptographic components and security notions

Cryptographic components are algorithms that are designed to achieve a
security goal. The goal is defined by a security notion associated with a game
that is played between a challenger and an adversary A. The cryptographic
component is then secure, if the probability of the adversary winning the
game is sufficiently small. In the context of indistinguishability games, where
the adversary wins the game if they make a correct guess, the security is
often defined over their advantage Adv over guessing.

Security notions capture desired proprieties, security guarantees and the
adversarial model, thereby also defining what constitutes a violation of the
security of a cryptographic scheme. Consequently, a security proof does not
guarantee security against any real-world adversary. Instead, the security is
limited to the specific adversarial model associated with the security notion.

In this manuscript we generally consider adversaries with access to a
quantum computer. This can either be a fully fault-tolerant quantum com-
puter, with access to large, scalable quantum circuits, or an adversary that
is limited in their power. Such limitations may be expressed, for example,
by limiting the depth of the quantum circuits that can perform a coherent
computation as in Section 3.4, or a restriction on the specific unitary they
can execute.

In the setting of post-quantum cryptography, cryptographic protocols are
proven to fulfill a security notion by reduction to a quantum-computationally

cryptographic components and security notions 19

Table 2.1: Overview of the notation used for algorithms throughout this manuscript.

Algorithms Context

c, k← Encaps(pk) Public-key encapsulation using public key
pk produces a ciphertext c and key k.

{k,⊥} ← Decaps(sk, c) Decapsulation of the ciphertext c using the
secret key sk produces a key k or ⊥.

c← Encrypt(pk,M) Public-key encryption of messageM under
public key pk produces a ciphertext c.

M ← Decrypt(sk, c) Decryption of the ciphertext using the se-
cret key sk produces the plaintextM .

σ ← Sign(sk,M) Signature under the secret key sk of mes-
sageM produces the signature σ.

{0, 1} ← Verify(vk, σ,M) Public-key verification of the signature σ
and message M under the public key vk
outputs either 1 if the verification was suc-
cessful or 0 otherwise.

τ ← MAC(sk,M) Generation of message authentication tag
τ under the secret key sk of messageM .

hard assumption, i. e., an NP-problem that cannot be decided in polynomial
time by a quantum computer.

The reduction also provides a quantification, in form of a security loss, of
the cost that has to be achieve the security notion, relative to the cost that an
adversary has to break the underlying intractability assumption. The specific
limitation will be defined at a local level.

The review of the following cryptography components and their respective
security notions are in support of the remaining manuscript. Table 2.1
summarizes the notation of cryptographic algorithms, the details of which
are in the subsequent paragraphs. We denote a particular scheme used
in subscript, for example, EncryptABC if the algorithm corresponds to the
encryption scheme ABC. We omit the label if the used algorithm is clear
from the context.

Remark 1 (Notions and reductions in cryptography, abridged and extended
from [Sch20]). In complexity theory “problem P reduces to problem Q”, written
as P ≤ Q, formally means that:

∃ algorithm for Q⇒ ∃ algorithm for P

̸ ∃ algorithm for P ⇏ ∃ algorithm for Q ,
(2.1)

thus showing that if no algorithm to solve problem P exists, than also no
algorithm to solve problem Q exists.

In cryptography, the security of a protocolΠ is expressed by a security notion
X, written as XΠ, relative to an assumption or problem A. For a reduction
the converse of the setting in complexity theory is expressed: “security of XΠ

reduces to the hardness of problem A”, written as XΠ ≤cr A, means that

∃ algorithm for XΠ ⇒ ∃ algorithm for A

̸ ∃ algorithm for A⇏ ∃ algorithm for XΠ .

cryptographic components and security notions 20

In the setting of cryptography “algorithm for” refers to an algorithm or adversary
that breaks a security notion. As such, a protocol remains secure, if the problem
A remains difficult.

When comparing two security notions, X,Y , cryptographers say “X is
stronger than Y”, corresponding to the same implication as Equation (2.1)
where P = X and Q = Y , where the security notion X usually has a more
powerful adversarial model than Y , and is therefore more difficult to achieve.
Equivalently, we often write “A is a stronger assumption/problem than B”,
corresponding to the same implication as Equation (2.1) where P = A and
Q = B, meaning that A is the easier problem to solve.

Key Encapsulation Mechanism. A KEM as in Definition 2.2.1 is a crypto-
graphic protocol used to securely transmit a (symmetric) key using asymmet-
ric cryptography. Some KEMs, especially those in the NIST post-quantum
competition, have a non-zero chance that the decapsulation Decaps(sk, c)
on input of the ciphertext and the secret key fails, returning an error symbol
⊥. This is denoted as decryption failure, where c is a failing ciphertext.

Definition 2.2.1 (Key Encapsulation Mechanism). A KEM kem is a triplet
(KeyGen, Encaps,Decaps) of Probabilistic Polynomial Time (PPT) algorithms:
KeyGen generates a secret key sk ∈ SK and a public key pk ∈ PK,
(pk, sk)← KeyGen(1λ), Encaps generates a key k ∈ K and a ciphertext c ∈ C
as (k, c) ← Encaps(pk), and Decaps decapsulates the ciphertext to a shared
secret, {k′,⊥} ← Decaps(sk, c), returning either a key or an error symbol ⊥.
The KEM is δkem correct, if k′ is equal to k with probability at least 1− δkem.

A common security notion for key encapsulation mechanisms is Indistin-
guishability under Chosen Plaintext Attack (IND-CPA) as in Definition 2.2.2.
In the game-based security a challenger samples a bit b∗ and a key pair
(pk∗, sk∗), creates an encapsulation ciphertext c∗, and passes pk∗, c∗ and k∗

to the adversary, where k∗ is either a key from an encapsulation, or a random
key, depending on b∗.

Definition 2.2.2 (IND-CPA KEM).

AdvIND-CPAkem (A) :=

⃓⃓⃓⃓
⃓⃓⃓P
⎡⎢⎣b=b’ :

(pk, sk)← KeyGen(1λ); b $←− {0, 1}
(k0, c)← Encapspk; k1

$←− K
b′ ← A(pk, c, kb)

⎤⎥⎦− 1

2

⃓⃓⃓⃓
⃓⃓⃓

A KEM is said to be IND-CPA secure if the running time of the adversary is
polynomial in the security parameter λ, and the probability of the adversary
winning the game is negligible. i. e.,

AdvIND-CPA
kem (A, λ) ∈ negl .

A stronger security notion of KEMs is the IND-CCA, where the adversary
additionally gets access to a decapsulation oracle. The advantage of an
adversary winning an IND-CCA security game can be expressed using the
following Definition 2.2.3.

cryptographic components and security notions 21

1The DDH assumption is as follows: Let
⟨g⟩ = G. Given g, ga, gb, H, decide ifH =
gab or if H is uniformly random in G.

2The CDH assumption is as follows: Let
⟨g⟩ = G. Given g, ga, gb, compute gab.

Definition 2.2.3 (IND-CCA KEM, abridged from [BHK15] [BHK09, Fig. 3].).

AdvIND−CCA
KEM (A) :=

⃓⃓⃓⃓
⃓⃓⃓P
⎡⎢⎣b=b’ :

(pk, sk)← KeyGen(1λ); b $←− {0, 1}
(k0, c)← Encapspk; k1

$←− K
b′ ← ADecaps(pk, c, kb)

⎤⎥⎦− 1

2

⃓⃓⃓⃓
⃓⃓⃓

A KEM is said to be IND-CCA secure if running time of the adversary is
polynomial in the security parameter and their probability to win the game
is negligible:

AdvIND-CCA
kem (A, λ) ∈ negl .

Remark 2. We extend Remark 1 with an example: IND-CCA security is stronger
than IND-CPA security, since the model gives the adversary an additional de-
capsulation oracle. Similarly for hardness assumptions, consider the Decisional
Diffie–Hellman (DDH)1 and Computational Diffie–Hellman (CDH)2 assumption.
The DDH is stronger than the CDH assumption, since an algorithm for CDH
gives an algorithm to solve DDH.

Combining security notions and assumptions, we point out a few implica-
tions: Consider the security notions X,Y with X stronger than Y and the
assumptions A,B with A stronger than B. Let Π be some protocol.

Assume, XΠ ≤cr A, then one can make a statement about Y , since per
definition non-existence of an algorithm for to solve X implies non-existence of
an algorithm to solve Y . However, we cannot make a statement about B.

(XΠ ≤cr A)⇒ (Y Π ≤cr A)

(XΠ ≤cr A) ̸⇒ (XΠ ≤cr B)

Similarly, assume, Y Π ≤cr B, which implies reduction to the hardness of A,
since there exists an algorithm for B, there also exists an algorithm for A, but
not a reduction to B.

(Y Π ≤cr B)⇒ (Y Π ≤cr A)

(Y Π ≤cr B) ̸⇒ (XΠ ≤cr B)

Signature Scheme. A signature as in Definition 2.2.4 is a cryptography
protocol used to provide authenticating using asymmetric cryptography.

Definition 2.2.4 (Signature Scheme). A signature scheme sig is a triplet
(KeyGen, Sign,Verify) of PPT algorithms: (vk, sk) ← KeyGen(1λ) samples a
verification or public key vk ∈ VK and a signature key sk ∈ SK. σ ←
Sign(sk,M) uses sk to generate a signature σ ∈ S for some messageM ∈M.
b ← Verify(vk,M, σ) uses vk to check whether σ is a valid signature for the
message M and outputs the result as a bit b ∈ {0, 1}.

A common security notion for signature scheme is the Existential Un-
forgeability under Chosen Message Attack (EUF-CMA). The advantage of an
adversary winning an EUF-CMA security game can be expressed using the
following Definition 2.2.5.

Definition 2.2.5 (EUF-CMA, , abridged from [BS23, Attack Game. 13.1]).

AdvEUF-CMA
sig (A) :=

⃓⃓⃓⃓
⃓⃓⃓P
⎡⎢⎣1← Verify(vk,M ′, σ′) :

(vk, sk)← KeyGen(1λ)
M ′, σ′ ← ASign(sk)

M’ not queried to Sign

⎤⎥⎦
⃓⃓⃓⃓
⃓⃓⃓

cryptographic components and security notions 22

[BS23] Boneh and Shoup, A Graduate Course
in Applied Cryptography

[HKT10] Holenstein, Künzler, and Tessaro,
“Equivalence of the Random Oracle Model
and the Ideal Cipher Model, Revisited”

A signature is said to be EUF-CMA secure if the advantage of the adversary
A is negligible:

AdvEUF-CMA
sig (A, λ) ∈ negl .

A weaker definition is that of Universal Unforgability (UUF), where
the adversary has to provide a valid signature on a message chosen by the
challenger that was not signed by the challenger before as in Definition 2.2.6.

Definition 2.2.6 (UUF).

AdvUUFsig (A) :=

⃓⃓⃓⃓
⃓⃓⃓⃓
⃓P
⎡⎢⎢⎢⎣1← Verify(vk,M∗, σ∗) :

(vk, sk)← KeyGen(1λ)
M∗ ← {0, 1}∗

σ∗ ← ASign(vk,M∗)

M∗ not queried to Sign

⎤⎥⎥⎥⎦
⃓⃓⃓⃓
⃓⃓⃓⃓
⃓

A signature is said to be UUF secure if the advantage of the adversary A is
negligible in the security parameter λ:

AdvUUFsig (A, λ) ∈ negl .

Random Oracle and Ideal Cipher Model. The random oracle model is a
powerful tool for security reductions, that allows to give entities access to a
truly random function as an oracle. In practice, random oracles are instanti-
ated with calls to cryptographic hash functions, which are not truly random
functions, but for which it is computationally difficult to find preimages,
second preimages and collisions.

Random oracles are theoretical tools that provide many desirable proper-
ties, such as programmability, i. e., where a reduction can choose the range
of the random function “on-the-fly” during the reduction and dependent
on an adversaries query. A formal treatment of the random oracle model
can be found in [BS23, Sec. 8.10.2]. Whenever this manuscript talks of
a random-oracle, the reader can think of a truly random function, unless
otherwise specified.

Similarly, an Ideal Cipher (IC) is the corresponding tool to model an ide-
alized block-ciphers, describing the map {0, 1}∗×{0, 1}λ → {0, 1}∗. Briefly
speaking, an ideal cipher models a block cipher as a random permutation,
which is fully defined by a uniformly random key. The ideal cipher and
random oracle model have been shown to be equivalent [HKT10].

Pseudo-Random Function Pseudo-random functions are defined over a
security game, where the adversary can query an oracle with an input x, and
the challenger responds with the evaluation of the pseudo-random function
under a uniformly random key and an input, as in Definition 2.2.7.

Definition 2.2.7 (Pseudo-Random Function). Let PRF : K × X → Y be an
efficiently computable function and K be a key space. Define an oracle that
returns either PRF(k∗, x) ∈ Y for a uniformly random but fixed string k∗, or
they return RF(x) for a uniformly random but fixed function RF ∈ YX . The
choice of output is depending on a uniformly random but fixed challenge bit.

PRF is called a Pseudo Random Function (PRF) up to λPRF ∈ negl, if no
polynomially bounded adversary can efficiently distinguish the two cases with
advantage larger than λPRF.

cryptographic components and security notions 23

AdvPRF(A, λ) :=
⃓⃓⃓
P
[︂
1← APRF(k∗,·)(1λ)

⃓⃓⃓
k∗ $←− K

]︂
−P
[︂
1← ARF(·)(1λ)

⃓⃓⃓
RF $←− YX

]︂ ⃓⃓⃓
≤ λPRF .

One-Way Functions Similarly to Pseudo-Random Functions, one-way func-
tions are defined as in Definition 2.2.8.

Definition 2.2.8 (One-Way Function). An efficiently computable function
owf : X → Y is called One-Way Function (OWF), if for every polynomially
bounded adversary and for every λ ∈ N, the adversary cannot find a preimage
to a given, random image except with advantage εowf ∈ negl(λ):

Advowfowf(A, λ) := P
[︁
owf(x∗) = owf(x′) | x′ ← A(1λ, owf(x∗)), x∗ ← X

]︁
≤ εowf

A keyed hash function is closely related to a key-less hash function,
except that the mapping is fully defined by an additional input, the key, as
in Definition 2.2.9.

Definition 2.2.9 (Keyed Hash Function, abridged from [BS23, Def. 8.2]). An
efficient, deterministic computable functionHK : {0, 1}λ×{0, 1}m → {0, 1}n

is called a keyed hash function, if it maps from a key space and a large message
space into a small digest space, i. e., m > n.

The second-preimage resistance for keyed hash functions as in Defini-
tion 2.2.10 is defined similar to the second-preimage resistance of key-less
hash functions, where the hash function family in question is fully deter-
mined by a key k. The key is chosen uniformly at random by a challenger.
The adversary get oracle access to the keyed hash function in question along
with a preimageM ; their advantage is defined over their ability to provide a
second-preimageM ′ that maps to the same image Hk(M).

Definition 2.2.10 (2nd Preimage Resistance, abridged from [HRS16], [BS23,
Def. 8.6]).

AdvSPRHK
(A) :=

⃓⃓⃓⃓
⃓⃓⃓P
⎡⎢⎣M ̸=M ′ ∧HK(M) = H(M ′) :

M $←− {0, 1}m

K $←− {0, 1}λ

M ′ ← AHk(M)

⎤⎥⎦
⃓⃓⃓⃓
⃓⃓⃓

Definition 2.2.10 is sometimes considered as single-function, single-target
second-preimage resistance. If there is more than one target M or one
more than one function H this is explicitly mentioned, and thus we omit the
single-function and single-target prefix in the rest of the manuscript.

Part II

COSTING ADVERSARIES ON
POST-QUANTUM CRYPTOGRAPHY

[Nat17] National Institute for Standards and
Technology, Post-Quantum Cryptography Call
for Proposals

Summary

Quantum computing appears to be, in 2024, one of the most significant
threats of the 21st-century to cryptography, with the potential to break
widely used encryption methods. While symmetric cryptography appears
to be largely quantum-resistant, i. e., it requires only to double the length
of the security parameter, some asymmetric cryptographic protocols are
much more vulnerable to large, scalable quantum computers. Quantum
computing does not only introduce novel attacks using quantum algorithms,
but also turns attacks that were considered infeasible into potential threats
due to a quantum speedup. For cryptography to be secure for the coming
decades we may need to turn to new intractability assumption, based on
computational problems believed to be hard to solve even for quantum
computers – post-quantum cryptography has emerged.

The most prominent post-quantum cryptosystems are the candidates
of the NIST competition [Nat17]. Figure 2.1 gives an overview over the
candidates of each round, along with the mathematical domain they are
associated with. The first round of the competition started in 2017 with 69

candidates. In the subsequent years the schemes, their implementations and
computational assumptions have been challenged to rule out insecurities.
After the second and the third round, seven protocols were left, of which one
KEM and three signature schemes were chosen as finalists to be standardized
in 2022. The remaining three candidates moved on to a forth round as
alternative finalists – one of which was broken in the same year.

Round 1
(2017)

Round 2 Round 3 Round 4

Other

Isogeny-based
Multi-Variate Quadratic

Code-based

Lattice-based

Hash-based

Selected Algorithms
(2022)

Figure 2.1: Overview of the candidates in the NIST post-quantum competition
along with the mathematical domain they are based in. Note that “Other” includes
Mersenne-based cryptosystems.

While losing a finalist might seem unfortunate, this is precisely the
purpose of publicly reviewing the code and the specifications: to identify
attacks, flaws, implementation bugs, side-channel vulnerabilities, and other
security issues, leaving only the most secure candidates standing. The review
process does not guarantee the absence of flaws, however, it increases the
confidence in the underlying concepts and intractability assumptions. In
order to quantify the security of cryptographic scheme and decide what
accounts for an attack, one must carefully define the model of security, and
evaluate the practicability of the most well-known algorithm. Particularly,
the following questions need to be addressed: 27

summary 28

[TD20a] Tiepelt and D’Anvers, “Exploiting
Decryption Failures in Mersenne Number
Cryptosystems”

[Agg+17a] Aggarwal et al., A New Public-Key
Cryptosystem via Mersenne Numbers

[Agg+17b] Aggarwal et al., Mersenne-
756839

[Sze17] Szepieniec, Ramstake

[Beu+19] Beunardeau et al., “On the Hard-
ness of the Mersenne Low Hamming Ratio
Assumption”

What is a suitable cost model for (quantum) attacks?

When is a (quantum) attack considered practical?

To facilitate the discussion, the NIST gives a framework defining five
security levels, each of which is equivalent to breaking an instance of either
the Advanced Encryption Standard (AES) or the Secure Hash Algorithm
(SHA) with a quantum-circuit of restricted depth. This is motivated by the
belief, that both, AES and SHA, are relatively resistant against quantum
attacks, i. e., doubling the key length restores the desired security against
quantum attackers. The cost of breaking either AES or SHA with a quantum
computer is then the de-facto standard to consider a cryptographic scheme
secure. That means, an attack against a protocol claiming to achieve security
levelX is considered valid, if the expected quantum cost to attack this scheme
is below the cost of breaking a instantiation of AES which achieves security
levelX . While the framework allows to provide concrete numbers to compare
the cost of an attack, it does not define what constitutes quantum cost or
classical cost. For example, it is not clear, whether applying a single quantum
gate has the same cost as applying a single classical gate. At the time of
writing, in 2024, the quantum technology is not mature enough to answer
this question definitely.

In order to quantify the cost of classical and quantum algorithms we
review appropriate cost models in Chapter 3 and explore the NIST security
level framework in more detail. Subsequently we summarize the techni-
cal details of various candidates of the NIST post-quantum competition in
Chapter 4, and review the underlying intractability assumptions as well as
most-well known algorithms to approach these. The remainder of the part
is then dedicated to report on our contribution to the public analysis of the
NIST post-quantum competition, the results of which we summarize in the
following paragraphs.

Contribution 1. In Chapter 5, which is based on [TD20a], we analyze
the security of Mersenne number based cryptography, which was initially
introduced [Agg+17a] as single bit encryption scheme. In 2017, Aggarwal
et al. [Agg+17b] and Szepieniec [Sze17] refined the scheme and submitted
KEMs based on the Mersenne Low Hamming Combination problem to the
NIST post-quantum competition.

The Mersenne-prime cryptosystem Ramstake was proven to achieve IND-
CCA security under this intractability assumption, particularly, the submis-
sion and implementation claimed 128-bits of quantum security. Both of the
Mersenne-based submissions feature decryption failures, i. e., the decryption
algorithm has a low, but non-zero probability of failure.

We introduce a novel attack on Mersenne-based cryptosystems, showing
that IND-CCA security does not hold in the event of decryption failures. We
show that the information leaked from such failing ciphertexts can be used
to gain information about the secret key. As such, we present an attack
exploiting this information to break the IND-CCA security of Ramstake. Our
attack takes as input a set of decryption failures, i. e., ciphertexts that do not
decrypt correctly, and outputs a probability distribution for the bits of the
secret key. We demonstrate how the output can be used to apply an attack

summary 29

[Hül+20] Hülsing et al., SPHINCS+-
Submission to the 3rd round of the NIST post-
quantum project

[BT21a] Berger and Tiepelt, “On Forging
SPHINCS+-Haraka Signatures on a Fault-
Tolerant Quantum Computer”

[Köl+16] Kölbl et al., “Haraka v2 - Efficient
Short-Input Hashing for Post-Quantum Ap-
plications”

due to Beunardeau et al. [Beu+19] at significantly reduced complexity to
recover the full secret.

We implemented our attack on a simplified version of the code of Ram-
stake submitted to the NIST competition, and made it freely available, along
with instructions to reproduce all of our figures. In Chapter 5 we show how
to extract the secrets from an interaction with the protocol using decryption
failures. Our attack demonstrates that a good estimate of the secret can be
extracted from 212 decryption failures, which corresponds to querying 274

ciphertexts in the original scheme. Using the information from these cipher-
texts, the exact secrets can be extracted in about 246 quantum computational
steps.

Contribution 2. In Chapter 6, we analyze the security of the hash-based
signature scheme SPHINCS+ [Hül+20], which was a candidate in the second
and third round of the NIST competition when we analyzed the scheme, and
has been selected as a finalist in 2022. The results of this chapter have been
published as [BT21a].

The SPHINCS+ signature scheme is constructed from WOTS, FORS and
XMSS scheme, all of which are combined in a large hypertree. The security
of SPHINCS+ is based on the difficulty to find a second preimage of the
underlying hash functions, which can be instantiated with either SHAKE-256,
SHA-256 or Haraka. We explore various possibilities to attack the individual
signature components and compare how each component performs against
a quantum preimage attack. To that end, we identify the position in the
hypertree most suited for a universal forgery from a second preimage in the
SPHINCS+ scheme.

Subsequently, we evaluate the cost of implementing Quantum Amplitude
Amplification (QAA) based search for finding a preimage, and quantify the
resources required to mount such an attack on a fault tolerant quantum
computer. As such, we present an attack that performs better, to the best of
our knowledge, than previously published attacks (in 2021). Our analysis
focuses on the Haraka hash function [Köl+16], since this has not been ana-
lyzed previously, but also provide estimates for SHAKE-256 as a comparison.
As such, the analysis is limited to SPHINCS+-128.

We propose that the weakest link is the XMSS authentication path for a
given WOTS+ public key, as this allows a universal forgery attack. Our most
promising attack on SPHINCS+-128-Haraka requires about 1.6 · 286 logical
quantum gates. The same circuit to attack SPHINCS+-128-SHAKE-256 has
about logical 1.2 · 286 gates. In the setting of fault-tolerant quantum com-
puting, our attack requires 1.55 · 2101 logical-qubit-cycles and uses 1.94 · 220

physical qubits, where a logical-qubit-cycle is considered the quantum equiva-
lent cost of a single classical hash-function invocation. A logical qubit cycles is
computed as the product of number of logical qubits and surface code cycles
required to implement the quantum circuit. In contrast, the previously most
well-known generic attack on the hash function requires about 2129 classical
hash function invocations. Performing our attack with the SHAKE-256 hash
function instead requires 1.17 · 299 logical-qubit-cycles on 1.03 · 223 physical
qubits. The number can be reproduces with our open implementation.

https://github.com/mtiepelt/ramstake-failure-attack
https://github.com/RobinBerger/Grover-Sphincs

summary 30

[Sch+22] Schwabe et al., CRYSTALS-KYBER

[Lyu+22] Lyubashevsky et al., CRYSTALS-
DILITHIUM

[Pre+22] Prest et al., FALCON

[Bin+24] Bindel et al., “Quantum Lattice
Enumeration in Limited Depth”

Contribution 3. In the last chapter of this part, Chapter 7, we explore
meaningful lower bounds on the cost of attacking lattice based cryptosystems
with quantum lattice enumeration. Out of the 69 initial candidates of the
NIST competition, 27 were based on lattice cryptography. Three of the
finalists, the KEM Kyber [Sch+22] and the signature schemes Dilithium
[Lyu+22] and Falcon [Pre+22], are based on lattice assumption.

As part of our contribution [Bin+24] we propose a new classical-quantum
algorithm to perform lattice enumeration under a depth constraint, i. e.,
when limiting the maximum number of consecutive gates in a quantum
circuit. This limitation is part of the framework proposed by NIST (cf. Sec-
tion 3.4). To estimate the resources required to run our algorithm and to
understand the practical applicability of quantum enumeration, we propose
various meaningful upper and lower bounds on individual procedures of the
algorithm.

We apply our results to estimate the cost of attacking the Kyber KEM. Our
results for combined classical-quantum enumeration suggest that current
quantum enumeration with cylinder pruning techniques are unlikely to pro-
vide practical speedups against cryptographic instances of lattice problems
in a MaxDepth setting. Specifically, we identify that unless the distribution
of the number of nodes in lattice enumeration trees is subject to a signifi-
cant Jensen’s gap (cf. Definition 7.1.1), Kyber-1024 is likely unaffected by
quantum backtracking, even at MaxDepth = 296 and even for the most
generous-to-the-adversary model. The cases for Kyber-512 and Kyber-768
are slightly more nuanced. Indeed, in our model analysis we adopt strict
enough lower bounds that quantum speedups appear potentially plausible.
However, we emphasize that this does not result in “breaks” or contradictions
to Kyber’s claims: First, our analysis is excessively generous when under-
estimating predictable overheads, and second, running classical-quantum
enumeration in these costs would require 264 of Quantum Accessible Ran-
dom Access Memory (QRACM), which is controversial in the literature. We
provide a tool that allows to estimate the cost of quantum lattice enumeration
along with instructions to reproduce all of our figures, tables and plots.

https://github.com/mtiepelt/QuantumLatticeEnumeration

Parts of this chapter have been taken ver-
batim from our publications, i. e., [TD20a;
TD20b; BT21a; BT21b; Bin+24; Bin+23].

[NC11] Nielsen and Chuang, Quantum Com-
putation and Quantum Information: 10th
Anniversary Edition

[Aar23] Aaronson, Introduction to Quantum
Information Science Lecture Notes

[De 23] De Wolf, Quantum Computing: Lec-
ture Notes

1For a single qubit the computational basis

is
{︃
|0⟩ =

(︃
1
0

)︃
, |1⟩ =

(︃
0
1

)︃}︃
.

Wires of quantum circuits never cross, or
split up. This is due to the No Cloning The-
orem [NC11, Box 12.1], which states that
no quantum state can be copied. Indeed,
there is no unitary operation that performs
the map U |ψ⟩ ⊗ |0⟩ ↦→ U |ψ⟩ ⊗ |ψ⟩. The
splitting wire in Figure 3.1 is a controlled
operation: This means, the controlled gate
is applied, if and only if the controlling qubit
is set to one. A gate can be controlled by one
or multiple qubits.

3
Quantum Algorithms and Cost Models

This chapter reviews quantum algorithms used throughout the first part as
attacks on cryptographic protocols, and subsequently metrics to quantify the
cost of classical and quantum algorithms.

3.1 quantum computing

We introduce the notation necessary to follow the manuscript, and by no
means provide a complete introduction to quantum computing – for that we
recommend the book of Nielsen and Chuang [NC11], as well as the lecture
notes of Aaronson [Aar23] and De Wolf [De 23], which we also used as a
point of reference.

Quantum States. Quantum states |φ⟩ are rays in Hilbert space H, a
complex vector space with an inner product. A k dimensional Hilbert space
Hk corresponds to a 2k dimensional complex vector space C2k , associated
with a basis. Commonly, the computational basis1 is used, which corresponds
to the set of vectors with a single one in the ith entry of the vector.

We write quantum states as state vectors in Dirac-notation, were the
ket-notation |·⟩ denotes a normalized, unit vector, and the bra-notation ⟨·|
denotes its conjugate transpose. We commonly use lower-case greek letters
for quantum states. Quantum states evolve via unitary operations which we
denote U , i. e., the unitary implementing function f is denoted Uf , where
U†
f is its conjugate transpose.

Quantum Circuit Model. A quantum circuit is a directed acyclic graph
that represent the evolution of quantum states from a fixed initial, to a
final state. Such a circuit consists of quantum and classical wires, as well
as gates corresponding to unitary evolution or measurement. The initial
state is on the left side, the final state is on the right. Quantum circuits
are laid out in time, rather than space, such that the order of gates matters.
Figure 3.1 shows an example for a generic quantum circuit. When talking
about quantum circuits we sometimes refer to registers rather than states,
writing lower case letters |a⟩ for individual qubits and upper case letters |A⟩
for a multi qubit register.

QuantumMemory and Uncomputation. The evolution of a quantum state,
and thus the quantum gates, is described by a unitary matrix, Accordingly,

31

quantum computing 32

|a⟩ G |a′⟩

|B⟩
Gate

|B′⟩

|φ⟩ |φ′⟩

Figure 3.1: Example of a quantum circuit with initial state |b⟩ ⊗ |B⟩ ⊗ |φ⟩, where
register |B⟩ consists of n qubits. G is a single qubit gate, Gate a controlled multi qubit
gate. After the measurement, the double wire represents to the collapsed quantum
state.

|y⟩

|g⟩

|x⟩

Uf U†
f

|x⟩

|0⟩ |0⟩

|0⟩ |y⟩

Figure 3.2: Copy-uncompute circuit that allows to reset ancillary quantum registers
to a known state.

[Ben89] Bennett, “Time/Space Trade-Offs
for Reversible Computation”

2Note that this does not correspond to an
actual copy of the state. The name stems
from the fact that same content is now in
both registers, but with the caveat that they
are entangled.

every quantum circuit is reversible – particularly, only reversible operations
can be implemented in quantum circuits. While this seems to be a drawback
at first, Bennett [Ben89] showed, that, informally, every non-reversible Turing
machine running in time T and using space S can be simulated by a reversible
Turing machine in time O(T 1+ϵ), ϵ > 0 and space O(S log T). As such, any
classical algorithm can be translated to a quantum circuit with at most
polynomial overhead in both time and space.

Along with the results on reversible computing, Bennett [Ben89] also
introduced the concept of “copy-uncompute”, which allows to reset a register
of ancillary qubits to a known state. Consider a unitary Uf that acts on
Hilbert space H1 ⊗ H2, where H2 are intermediate results that are not
further used in the computation. After evolving the joined quantum state
with Uf , the states in the Hilbert spaces can be entangled. Then, we cannot
“reset” (for example, by measuring) the quantum state corresponding to H2

without disturbing the other states. Indeed we would have to preserve this
quantum state until the end of the whole computation.

Instead, one can apply the copy-uncompute trick depicted in Figure 3.2:
First, the circuit is extended with an additional register corresponding to a
vector inH3 that will hold the final result. Then the initial state is |x⟩ |0⟩ |0⟩ ∈
H1 ⊗ H2 ⊗ H3. After applying Uf , the state is |y⟩ |g⟩ |0⟩, where |g⟩ is
some unknown garbage state as intermediate output from computing the
unitary. Next the computation result |x⟩ is “copied”2 to the additional register,
resulting in state |y⟩ |g⟩ |y⟩. In a final step, the unitary Uf in uncomputed
by applying the conjugate transpose U†

f , which resets the garbage to a
known state, resulting in |x⟩ |0⟩ |y⟩. Now the quantum register |0⟩ ∈ H2

is in a known state that can be re-used in further computation. Note that
we often have to keep both |x⟩ and |y⟩ (the in- and the output) of the
computation until measurement to preserve reversibility. Bennett [Ben89]

quantum computing 33

[GLM08] Giovannetti, Lloyd, and Maccone,
“Quantum Random Access Memory”

[Kup11] Kuperberg, Another subexponential-
time quantum algorithm for the dihedral hid-
den subgroup problem

[JR23] Jaques and Rattew, QRAM: A Survey
and Critique

used the copy-uncompute trick to show their bound on the additional memory
required to construct a reversible circuit. In a nutshell, the additional memory
comes from constructing a binary tree of height log T , that computes the
intermediate result of every computational step, and later uncomputes this.

QRACM. We consider the use of QRACM. This can be thought of as a
classical array (a1, . . . , an) that can be read by a quantum computer into
a state

∑︁
i≤n |ai⟩ in O(n poly(log(n))) operations [GLM08; Kup11; JR23].

All our algorithms use a polynomial amount of qubits, and some of our
approaches require an exponential-size QRACM. The exact amount of qubits
required will be given for each algorithm individually.

3.1.1 Quantum Amplitude Amplification

In this manuscript we use quantum amplitude amplification in the form of
Grover’s search algorithm, as depicted in Figure 3.3, and as quantum walk
as described in Section 3.1.2. We use Grover’s algorithm in Chapter 5 to
estimate the asymptotic cost of recovering the secret key of Mersenne-number
based cryptography, and in Chapter 6 to estimate the cost of computing a
second preimage of a hashfunction. We use quantum walks to estimate the
cost of quantum lattice enumeration in Chapter 7.

Let D be a set (or “database”) and T ⊂ D be a subset of targets. Let
f : D → {0, 1} be a membership oracle, that identifies membership of
elements in T , that is, f(x) = 1 if and only if x ∈ T . Let UD be a unitary
that maps |0⟩ ↦→

∑︁
i∈D |i⟩, Uf be such that Uf |x⟩ = (−1)f(x) |x⟩, and

U0 := In − 2 |0⊗n⟩ ⟨0⊗n| be a unitary that inverts the phase of |0⟩, where
n corresponds to the number of qubits required to represent the elements
in the database. Define the operator Q := (−UDU0U

−1
D)Uf . QAA allows

to find an element in T by applying operator Q times to a state initially
holding |D⟩. At the end of the computation the final state is α |T ⟩+ β |E⟩,
where |E⟩ corresponds to some error state that does not overlap with the
target state |T ⟩. A circuit corresponding to Grover’s algorithm is depicted in
Figure 3.3.

Repeat O
(︂√︂

|D|
|T |

)︂
times

|D := 0⟩ UD

Uf

U†
D

U0 UD α |T ⟩+ β |E⟩

|O := 0⟩ X H |0⟩

Figure 3.3: Generic quantum circuit for Grover’s algorithm where UD generates a
superposition over a database, Uf marks a target state and U0 = In−2

⃓⃓
0⊗n

⟩︁ ⟨︁
0⊗n

⃓⃓
is the inversion about the mean of the amplitudes. The sequence of gates comprising
UD and the inversion of the mean are referred to as Diffusion. At the end of the
computation the amplitude of the target states α is close to one. The states |E⟩ with
amplitude β are error states.

The success probability, i. e.probability |α|2 to measure x ∈ T , when
measuring the final state in Figure 3.3 relies on performing the correct

quantum computing 34

[Bra+02] Brassard et al., Quantum ampli-
tude amplification and estimation

number of iterations. Let the initial distribution of the quantum state be∑︂
i∈D

|i⟩ = 1√
t
|ψG⟩+

1√︁
|D| − t

|ψB⟩ ,

where |ψG⟩ corresponds to the target states x ∈ T and |ψB⟩ to all other
states x ∈ D \ T . After j iterations, the state is described by Lemma 1.

Lemma 1. (State of QAA, abridged from [Boy+05, Sec 3]) Let θ = |T |
|D| the

initial probability to measure a target element. After j iterations of quantum
amplitude amplification, it holds that the state is Qj |ψ⟩ = 1√︁

|T | sin((2j +

1)θ) |ψG⟩+ 1√︁
|D|−|T | cos((2j + 1)θ) |ψB⟩.

As such, the quantum state encodes an element in T with large proba-
bility after π

4

√︂
|D|
|T | applications of operator Q. Even if |T | is not known in

advance, it can be shown[Bra+02] that an element of T can be extracted
with O(

√︁
|D|/|T |) applications of Q. Finally, if the amplitude of the error

state |E⟩ is to large, one can perform probability amplification by combining
multiple executions of Grover’s algorithm. We note that we address this
individually for the specific use cases if required.

3.1.2 Quantum Backtracking from Quantum Walks

Backtracking. Backtracking can be implemented as a depth-first search
(DFS) algorithm that allows exhaustively finding “marked” leaves on trees,
where a marked leaf corresponds to an unknown assignment to a set of
variables. Let P be a predicate that takes as input a variable assignment
and outputs one, if the assignment evaluates to true, Indeterminate if the
solution is ambiguous and zero otherwise.

A backtracking algorithm starts in an initial configuration of the variables
and evaluates the predicateP on a new assignment to the variables repeatedly,
If the predicate returns Indeterminate, it assign a value to the next variable
resulting in a new assignment, and computes the predicate again. This is
repeated until all possible values of all variables have been checked, or until
the predicate returned true on an assignment. This procedure generates a
backtracking tree as in Definition 3.1.1.

Definition 3.1.1 (Backtracking Tree). Given a predicate P and a heuristic to
decide which variable is assigned next, a backtracking tree T is an undirected
graph representing variable assignments in a depth-first-search. Each node in
the tree represents a partial assignment to a subset of variables ordered by the
heuristic, such that the nodes at level i instantiate the variables x1, ..., xi. The
children of a node at level i are all assignments to the variable xi+1 such that
P (x1, ..., xi, xi+1) ̸= 0.

Quantum Phase Estimation. Given a unitary operator U with eigenvector
|u⟩ and eigenvalue e2πiϕ, ϕ ∈ [0, 1), Quantum Phase Estimation (QPE) finds
the value of ϕ by repeatedly applying the operator U . Quantum phase
estimation can be used to implement a quantum walk as detailed in the
following paragraphs.

quantum computing 35

[Mon18] Montanaro, “Quantum-Walk
Speedup of Backtracking Algorithms”

[Sze04] Szegedy, “Quantum Speed-Up of
Markov Chain Based Algorithms”

[Bel13] Belovs, Quantum Walks and Electric
Networks

Theorem 1 (Quantum Phase Estimation, abridged from [Cle+98, Sec. 5]).
There exists a quantum circuit that finds ϕ to a precision of s bits with a
probability of 1− ϵ using s′ + |u| qubits, where ϵ = s+ ⌈ log(2 + 1

2ϵ)⌉. The
algorithm uses 2ϵ controlled-U operations and O

(︁
(ϵ)2

)︁
other gates.

|x0⟩ H

QFT †

|φ0(x)⟩

|x0⟩ H |φ1(x)⟩

|x2⟩ H |φ2(x)⟩

|ψ⟩ U U2 U22 |ψ⟩

Figure 3.4: Quantum circuit for quantum phase estimation of operator U with
precision s = 3. QFT† is the conjugate transpose of the quantum Fourier transform.

Quantum Backtracking. In [Mon18], Montanaro introduced quantum
backtracking algorithms using a quantum walk. A quantum walk is the
quantum equivalent of a random walk on an undirected graph G = (V,E)

where a subset of the nodes is marked, if they are a solution to the search
problem. [Sze04] showed that, starting from an initial state in a stationary
distribution, a marked vertex can be found in time O(

√
H) of the classical

hitting time H. [Bel13, Sec 2.1] extended the result to arbitrary starting
distributions allowing to walk graphs that are defined locally, i. e., given an
oracle that computes a neighbor on input of a node. [Bel13] modeled the
graph as an electrical network, where each edge is assigned a weight and
each node a resistance. Then [Bel13, Thm 4] shows that a quantum walk
can detect a marked node with failure probability at most 2

3 after applying
QPE with precision 1

β
√
RW

, for some constant β > 0 and where R is the sum
of the resistance on the path from the initial distribution to a marked node
andW is the total sum of all weight of the graph. The precision of the QPE
is inverse to the leading cost of the quantum walk.

Montanaro provided algorithms for detecting [Mon18, Alg. 2] (cf. Algo-
rithm 3.5) and finding [Mon18, Sec. 2.3] (cf. Algorithm 3.6) marked vertices
in a tree, both achieving an asymptotic speedup over classical backtracking.
Both of these algorithms are based on a common quantum walk, QPE(W),
whereW is the operator that corresponds to a single step of the quantum
walk using the predicate PR to decide if a node is marked.

The quantum walk applies the operator W consecutively WQ(T ,W)

often to a state corresponding to a superposition of the nodes in the back-
tracking tree T . By the proof of [Mon18, Lem. 2.4], the eigenvectors ofW
are the states that admit a path from the root to a marked node. Measuring
the root node after a sufficient number of steps allows to identify whether a
path to a marked node exists with false positive probability ≤ 1/4 and false
negative probability ≤ 1/2.

The detection algorithm DetectMV [Mon18, Alg. 2] consists of repeating
QD(T) := ⌈ϵ log(1/δDMV)⌉ times QPE, for some constant ϵ > 0, to output

quantum computing 36

[Bin+23] Bindel et al., Quantum Lattice Enu-
meration in Limited Depth

“marked node exists” or “no marked node exists” with a failure probability of
at most δDMV. We determine bounds on values for ϵ and δDMV in Section 7.1.1
(with a more detailed analysis in [Bin+23, App. H]) and refer to the resulting
number of calls to the QPE within DetectMV as QD(T).

DetectMV (RA, RB , δDMV, h, β, ϵ, x)

1 : countAccept = 0

2 : repeat QD(T) := ⌈ϵ log(1/δDMV)⌉ times:
3 : if QPEx

(︁
RB , RA, prec := β/

√
#T h

)︁
= 1 then

4 : countAccept += 1
5 : if countAccept ≥ 3·QD(T)

8

6 : return “marked node exists”
7 : else
8 : return “no marked node exists”

Figure 3.5: Algorithm to detect a marked vertex where the QPEx is executed on the
tree rooted at node x with precision prec.

FindMV (RA, RB , δDMV, h, β, ϵ, x)

1 : if x is marked
2 : return x and terminate.
3 : if DetectMV (RA, RB , δDMV, h, β, ϵ, x) outputs “marked vertex exists”
4 : for c ∈ children(x)
5 : FindMV (RA, RB , δDMV, h− 1, β, ϵ, c)
6 : return “no marked vertex exists”.

Figure 3.6: Algorithm to find a marked vertex in a tree rooted at node x of height h.
The function children(x) returns all the children of node x.

Theorem 2 (Quantum Backtracking, abridged from [Mon18, Theorem 1.2]).
Let T be a backtracking tree of size at most #T u with degree O(1). Let P (x)
be a predicate that returns true if and only if x is a marked node. For any
0 < δDMV < 1, DetectMV outputs “marked node exists” if there exists x ∈ T
such that P (x) = true and “marked node does not exist” otherwise, with failure
probability at most δDMV. The algorithm performs O

(︁√
#T un log(1/δDMV)

)︁
evaluations of P , using poly(n) qubits.

g

r

QPE(W) ≡ Quantum Random Walk

g

rr

g

FINDMV(T (r))

DETECTMV(T (r))

DETECTMV(T (·))
DETECTMV(T (·))

DETECTMV(T (g))

Figure 3.7: Simplified overview of the procedures FindMV, DetectMV and the tree
searched by the first call to the quantum phase estimation.

For the algorithm returning a marked node in T , Montanaro suggests to
perform classical depth-first-search on T by using DetectMV as a predicate.
Figure 3.7 shows how the two procedures and the quantum walk act on a

classical cost model 37

[Mon18] Montanaro, “Quantum-Walk
Speedup of Backtracking Algorithms”

[AK17] Ambainis and Kokainis, “Quantum
algorithm for tree size estimation, with appli-
cations to backtracking and 2-player games”

simplified backtracking tree. DetectMV would be called on the children ci
of the root node, until one on the subtrees rooted at ci, for some i, returns
“marked node exists”. It would then proceed to search for a child of ci
spawning a subtree with a marked node, and so on, until reaching a marked
leaf. For a tree of height h where each node has at most C children, FindMV
will call DetectMV DF(T) ≤ 2 · h log C times, in the worst case.

If no upper bound on the number of nodes of T is known, the search
can be repeated with growing values of #T u = 20, 21, 22, . . . , resulting
in an additional runtime factor of O(log#T). Montanaro also shows that
overestimating the tree-size does not affect the quantum walk’s success
probability.

Quantum backtracking with tree size estimation. It is important to
note that the runtime of Montanaro’s quantum walk [Mon18] scales with
the upper bound on the tree size. Ambainis and Kokainis [AK17] introduce
an algorithm that uses the quantum walk of [Mon18] as a subroutine, and
the runtime of which is bounded (asymptotically) by the number of nodes
explored by the corresponding classical backtracking algorithm. They achieve
this by searching trees with growing upper bound on the tree size, until
either a marked node has been found, or until the runtime of Montanaro’s
algorithm is reached. In the latter case, [AK17] concludes that no marked
vertex is in the tree. Briefly speaking, the algorithm of [AK17] repeats a DFS
for growing values of i = 0, 1, ... log(#T), or until a marked node is found.
The DFS applies a quantum tree size estimation (cf. [AK17, Alg. 1]) to the
subtree rooted at every node visited, until the estimated size is less than 2i.
They then apply the quantum walk [Mon18] to that subtree with 2i as an
upper bound on the tree size.

3.2 classical cost model

In the context of the NIST’s post-quantum competition classical protocols are
subject to an analysis under the assumption that an adversary has access to a
quantum computer. The protocols under investigation are low level protocols
for either key encapsulation, or for digital signatures. Correspondingly, the
primary cost metric is computational cost. The communication cost, defined
as the number of interactions that the adversary has with any party, is not
considered in this analysis. These limitations are implicit and depend on the
computational power of the adversary. For instance, a polynomially bounded
adversary can have a polynomial number of interactions, but they are not
part of the security assessment. These resources play a more significant role
in higher level protocols (cf. Chapters 9 and 10 of Part III).

The classical cost metric is the computational cost, which be can most
readily defined as the cost for a single computational step. This computational
step can refer to taking a single step on a processor or a Turing machine,
but could also mean to compute some efficient function. Another resource
might be the memory required to run an algorithm. If the memory cost is
polynomial in the security parameter, the precise cost is often disregarded.
In this manuscript, we use the conventional asymptotic or Landau notation
as outlined in Section 2.1.

quantum cost model 38

[Ben89] Bennett, “Time/Space Trade-Offs
for Reversible Computation”

[Jon+12] Jones et al., “Layered Architecture
for Quantum Computing”

Transforming Classical to Quantum Algorithms. The relationship
between classical and quantum cost is well-established in the asymptotic
limit. In 1989 Bennett [Ben89, Thm. 1] demonstrated that any classical,
deterministic Turingmachine running in time T and spaceS can be simulated
by a reversible Turing machine using time O(T 1+ϵ), ϵ > 0 and space O(S ·
log T). Reversible Turing machines are equivalent to unitary operations,
where the Turing machine can be interpreted as an operator U and its
inverse as the conjugate transpose U†. Consequently, the theorem of [Ben89]
provides a bound on the cost and memory required when translating classical
to quantum computations.

In practice, translating classical procedures into quantum circuits proves
to be a significant challenge, with an increase in the cost in the range of
polynomial factors. Reasons for this include, but are not limited too, ineffi-
cient arithmetic, dependence on memory access, inability to parallelize, etc.
The algorithm with the lowest asymptotic complexity may not always be the
one that is the most efficient to translate into a quantum setting, and thus
may not result in the most practical attack. Conversely, it may also happen
that a function can be computed significantly more efficient on a quantum
computer, such that relevant instances have small constants, i. e., close to
0. As a result there are relevant real-world problems with asymptotically
large cost that can be solved rapidly. Consequently, evaluating costs in an
asymptotic model can result in an over- or underestimation of the cost of an
algorithm.

The following section is devoted to quantifying the cost of quantum com-
putation on a more practical level. All the below models can be considered
in the asymptotic setting, as is done initially in all three Chapters 5 to 7.
Additionally, we will also make assumptions on concrete implementation for
quantum circuits that lead to concrete values representing the cost of an
adversary relative to the current technological state. Based on these assump-
tion we provide a concrete cost estimation of our attacks (cf. Chapters 6
and 7).

3.3 quantum cost model

The layered architecture for quantum computing [Jon+12] is a systematic
framework that allows to analyze the resources to execute quantum algo-
rithms relative to a concrete hardware implementation. The architecture is
divided into five layers as shown in Figure 3.8. The two lowest layers deal
with the hardware implementation of the quantum computer, i. e., how to
read and write data onto a physical device, and how quantum gates are
applied on those devices. The layers provide as an interface a basic set of
faulty gates and qubits. These two layers are strongly dependent on the
concrete physical device. In this manuscript, we only consider the three
top-most layers, that allow to quantify resources relative to quantum gates
that appear in the quantum circuit model.

The third layer, the fault-tolerant layer, quantifies the necessity for error
correction of the faulty gates and qubits provided by the previous layers.
The layer “outputs” reliable qubits and gates, where reliable is defined as
the probability of causing a fault that is below a given threshold. In order to

quantum cost model 39

Physical Layer

Virtual Layer

Quantum Error Correction Layer
Fault-Tolerant Model
(cf. Section 3.3.3)

Logical Layer
Logical Circuit Model
(cf. Section 3.3.2)

Application Layer
Query-based Model
(cf. Section 3.3.1)

Physical qubits, processes

Faulty qubits, gates

Reliable qubits, gates

Universal gate set, Functions, QRACM

Figure 3.8: The layered quantum computing architecture of [Jon+12] ranges from
the physical implementation to the application layer. The top three layers are of
particular interest in resource estimation. The application layer and often considers
attacks relative to the number of queries to some oracle. The logical layer considers
the cost of individual quantum logic gates. The quantum error correction layer
considers the cost to translate faulty quantum resources, into reliable logical resources,
allowing to make assumptions on adversarial costs relative to a specific quantum
computing architecture. The remaining two layers are much dependent on the
physical implementation of the actual qubits and gates.

provide fault-tolerant resources, the layer deploys error correction and other
techniques that combine multiple faulty resources into fewer fault-tolerant
resources. While this requires assumptions on the cost of implementing
these techniques, it also provides the most detailed and realistic resource
estimation.

The logical layer expands the gates and qubits to provide a universal
set of quantum gates and considers the cost of these individual quantum
gates, allowing a better comparison of classical and quantum resources. The
number of universal, logical gates is closely related to the classical cost of a
computation. The application layer corresponds to the interface to the “user”
and requires the fewest assumptions about technology. It which quantifies
the cost of algorithms relative to computational steps, or to invocations of
functions and oracles.

3.3.1 Application Layer: Query-based Model

The application layer is the interface visible to a “user” who is executing
a quantum algorithm. The resource analysis conducted at this layer is
independent of the underlying implementation and is solely concerned with
the efficient computational steps required to execute an algorithm. The
interpretation of a computational step can vary, from individual gates that are
applied, to calling any function or procedure that can be computed efficiently.
This setting implies a conservative bound on the cost of the adversary, given
that the concrete implementation of the function is disregarded. The model
lower bounds this at unit cost.

quantum cost model 40

[Alb+19b] Albrecht et al., Estimating quan-
tum speedups for lattice sieves

[Jaq+20] Jaques et al., “Implementing
Grover Oracles for Quantum Key Search on
AES and LowMC”

[Jon+10] Jones et al., “Layered Architecture
for Quantum Computing”

[Mic20] Microsoft, Q# Language Specifica-
tion

[JS19] Jaques and Schanck, “Quantum
Cryptanalysis in the RAM Model: Claw-
Finding Attacks on SIKE”

[Nat17] National Institute for Standards and
Technology, Post-Quantum Cryptography Call
for Proposals

In the remaining manuscript we sometimes refer to this layer as the
query-based model, assuming black-box access to an oracle that computes
a function on any input on-demand. We use this model to estimate the
cost of our decryption-query attack on Mersenne-based cryptosystems in
Chapter 5, to identify the best oracle for Grover’s algorithm in Chapter 6, and
when exploring generous-to-the attacker lower bounds for quantum lattice
enumeration in Chapter 7.

3.3.2 Logical Circuit Layer: Circuit-based Model

Another, more precise, metric is the circuit based model, in which a black-
box is instantiated with an algorithm or quantum circuit. At a low level,
we can decompose any algorithm into a (universal) set of quantum gates.
The function of the logical circuit level is to provide these quantum gates.
The cost of implementing the quantum circuit can then be quantified by
counting the number of logical resources in the form of quantum gates and
qubits. In some cases it may be desirable to count a different resource,
such as arithmetic operations. We use this model to estimate the cost of
implementing hash functions for our analysis in Chapter 6, and considering
concrete cost estimates for quantum lattice enumeration in Chapter 7.

Decomposition. We rely on the de facto standard for universal quantum
gates in the literature [Alb+19b; Jaq+20; Jon+10], the Clifford+T gates.
This choice also allow us to benefit from a large literature on quantum circuits
as well as tools for resource estimates such as Q# [Mic20].

On this layer, we assume that the gates and qubits provided are fault-
tolerant and that non-local operations are cheap, i. e., without additional
assumptions on decoherence, error correction or time steps for implementing
an operator on a physical device. These are the same assumptions made by
tools such as Q# that we use in part of our work to estimate some upper
bounds on circuit costs in this model.

Number of Gates. The number of gates is commonly referred to as GCost
(or G-cost) in the literature. The use of the GCost is motivated by the
observation that, in practice, quantum gates are not a physical device, but
an operation performed on the quantum state. Such operation is likely
managed by a classical micro-controller, meaning that the G-cost is a lower
bound on the cost of evaluating gates of a quantum circuit. As such cost
also consumes classical resources, it can be compared to the cost of classical
algorithms [JS19, Def. 2.4]. Figure 3.9 shows a simplified example of the
GCost in a quantum circuit.

Definition 3.3.1 (G-cost, abridged from [JS19, Def 2.4]). A quantum circuit
that uses G logical Clifford+T gates has a GCost of θ(G) RAM operations.

Circuit Depth. It is also necessary to choose a cost metric to optimize the
circuit. In this manuscript, we follow the approach of the NIST [Nat17, Sec.
4.A.5], who suggest that quantum circuits may be limited to a fixed running
time, i. e., a fixed quantum circuit depth.

The circuit depth can be defined as the longest path from the input state
to the output state, if the circuit is considered as a directed graph with

quantum cost model 41

T T

T-DEPTH of 4

GCOST of 9

|x0�
|x1�
|x2�

|y0�
|y1�
|y2�

H

T

H

T

H

T TTT

Figure 3.9: Simplified example for GCost and T-Depth in a quantum circuit from
the Clifford+T gate set.

[Jaq+20] Jaques et al., “Implementing
Grover Oracles for Quantum Key Search on
AES and LowMC”

[Bai+23] Bai et al., “Concrete Analysis of
Quantum Lattice Enumeration”

[Alb+20b] Albrecht et al., “Estimating Quan-
tum Speedups for Lattice Sieves”

[Jon+10] Jones et al., “Layered Architecture
for Quantum Computing”

[Fow+12] Fowler et al., “Surface codes: To-
wards practical large-scale quantum compu-
tation”

[Jon+12] Jones et al., “Layered Architecture
for Quantum Computing”

[Bin+23] Bindel et al., Quantum Lattice Enu-
meration in Limited Depth

quantum gates as nodes. That means, we assume all independent parts are
computed in parallel. This is a standard assumption (for example [Jaq+20;
Bai+23; Alb+20b]), as most error correction schemes are active, meaning
it is costly to maintain a memory, whether or not a computation is done
with it. As such, circuit depth can be seen as an analogous measure to the
runtime of a classical computation, by considering that applying a gate must
take a non-zero amount of time, and is therefore often used to express the
asymptotic cost of quantum algorithms. We consider that the depth of the
circuit is a good representation of the time needed to run the algorithm.

Further, we make a crucial assumption regarding circuit depth: We
exclusively measure T-depth, that is the circuit depth when only taking into
consideration T gates, as preparation of these is expected to be the most
time-consuming part of practical quantum computation [Jon+10; Fow+12].
Figure 3.9 shows a simplified example of the T-Depth in a quantum circuit.

3.3.3 Quantum Error Correction Layer: Fault-Tolerant Model

We could try to be evenmore precise, aligning with the architectural approach
of existing quantum computer prototypes, and take into account the quantum
error-correcting or a limited qubit connectivity. The model for fault-tolerant
quantum computing represents such a model.

From a cost perspective it is the most precise approach, as its smallest
unit is the physical implementation of a gate or a qubit. Conversely, it also
carries the burden of relying on our current understanding of how quantum
computers may be constructed. In particular, the quantum computing model
used in this manuscript considers the quantum computing architecture of
[Jon+12; Fow+12] first presented in 2012.

In summary, the model receives a number of virtual, noisy qubits and
gates, and outputs fault-tolerant qubits and logical gates. To achieve this, the
architecture deploys error-correcting surface codes [Fow+12] and magic state
distillation Figure 3.10 to improve the quality of both the gates and the qubit
states. Surface codes and magic state distillation are used as black-boxes,
that means, we do not consider the exact inner working, and only provide
parameters to instantiate the black-box. The interaction of error-correcting
codes and magic state distillation in quantum computing architecture layers
is shown in Figure 3.10.

As with the logical cost analysis in Section 3.3.2, the T-gates appear
to be the most expensive resource [Jon+12; Fow+12][Bin+23, Sec. 2.3].
Therefore, our primary metric of concern is the cost of providing fault-tolerant

quantum cost model 42

Virtual

Quantum Error Correction

Logical

Application

Faulty qubits, gates

Reliable qubits, gates

Reliable qubits, universal gates

Error Correction of Clifford Gates

Surface Code
with constants C1, C2, εtresh

and distance d

pinG

poutG

Magic State Distillation

Distillation layers

Surface Code
with constants C1, C2, εtresh

and distance di

poutG

pinG

Figure 3.10: Fault-tolerant architecture for quantum computing. The layers gets as input a set of faulty qubits and gates, associated
with a failure probability pin

G. The output are the gates and qubits with failure probability at most pout
G . The thresholds are achieved

by deploying magic state distillation and surface codes that provide error correction based on a set of constants, and the variable
surface code distance d1, d2.

[Amy+16] Amy et al., “Estimating the Cost
of Generic Quantum Pre-image Attacks on
SHA-2 and SHA-3”

[FDJ13] Fowler, Devitt, and Jones, “Surface
code implementation of block code state dis-
tillation”

[Jon+12] Jones et al., “Layered Architecture
for Quantum Computing”

T-gates, which are processed using a process called magic state distillation,
which provides an error-corrected T-gate.

To estimate the required quantum error correction, one must make
assumptions on the physical implementation, i. e., the error probability of
the quantum computer provided by the virtual layer.

To instantiate these probabilities, we rely on Assumption 3.3.1, which
approximates the state of the art of quantum computing at the time of
writing [Amy+16; FDJ13]. We use these for comparability, but note that
other values have also been suggested, for example in [Jon+12].

Assumption 3.3.1. There exists a quantum computer architecture that provides
physical gates with error probability at most pinG ≈ 10−5 [Amy+16; Roe+17;
Jaq19].

We make an additional assumption (cf. Assumption 3.3.2) which simpli-
fies the cost estimation.

Assumption 3.3.2. The quantum gates of a circuit are distributed uniformly
across all layers.

While Assumption 3.3.2 does not hold per se, it does so for Grover’s algo-
rithm (cf. Section 3.1.1) over multiple Grover iterations, since each iteration
performs the same computations.

Fault-tolerant Cost Estimation. On a high level, the following steps
summarize the estimation of the fault-tolerant cost of an algorithm:

1. Determine the number of logical quantum gates to construct a quantum
circuit for the algorithm.

quantum cost model 43

[Jon+12] Jones et al., “Layered Architecture
for Quantum Computing”

[BK05] Bravyi and Kitaev, “Universal quan-
tum computation with ideal Clifford gates
and noisy ancillas”

[Amy+16] Amy et al., “Estimating the Cost
of Generic Quantum Pre-image Attacks on
SHA-2 and SHA-3”

2. Determine a bound on the failure probability of each gate, such that
the application of all gates in the circuit succeeds with a probability of
about one. This is referred to as the output success probability poutG of
each gate.

3. Determine the resources required to implement surface codes and
magic state distillation to transform gates with error probability pinG to
gates with error probability at most poutG .

In the following we detail the resources and assumption of the third step.

Surface Codes. Surface codes are a family of quantum error correct-
ing codes that correct errors introduced into a quantum state during the
application of a gate. In this manuscript we use these codes as a black-
box: The code is defined over constants C1, C2 and εthresh that are deter-
mined by the respective implementation. The error correcting code turns
non-T gates with error probability pinQ into gates with error probability

pout ≈ C1(C2p
in
Q)/εthresh

⌊(d+1)/2⌋ [Jon+12, Sec. IV.B]. Furthermore, each
surface code is associated with a surface code distance d, which is determined
by the input and output error probabilities. We follow Assumption 3.3.3 to
determine the parameters in our cost estimation.

Assumption 3.3.3. There exists a surface code with constants C1 = 1 and
C2/εthresh = 80, and surface code distance d that maps gates with error
probability pinG to gates with error probability at most

poutG ≤ (80pinG)⌊d+1/2⌋ , (3.1)

Let pinG be the failure probability of a quantum gate. For each logical qubit
that the gates operate on, the surface code requires 2(d+ 1)2 physical qubits
to be implemented in a surface code. [Jon+12, Sec. IV.B]. A surface code
with distance d uses about d surface code cycles. A surface code takes about
tsc = 200ns for a single cycle. [Amy+16; Roe+17; Jaq19]

Magic State Distillation. Magic state distillation is the process of gen-
erating magic states in one or multiple layers of magic state distilleries. A
magic state is a special quantum state that is used to construct a single,
fault-tolerant T-gate, the exact construction of which is not of interest for
this manuscript i. e., magic state distillation is used as a black-box.

For each T-gate, such a magic state has to be constructed. Initially, the
magic states have error probability from Assumption 3.3.1 and need to be
distilled to have a lower error probability. This distillation is performed using
layers of error correction. In this manuscript, we deploy the Reed-Muller-15-
to-1 [BK05] distillation as instantiated in Definition 3.3.2. Each layer uses
15 magic states with an input error rate of pin,iG and produces one magic state
with lower error rate pout,i+1

G ≈ 35(pin,iG)3. We follow the work of [Amy+16]
and assume that the amount of logical errors introduced during distillation
is already covered in the process.

In order to reach the desired output error probability poutG one may need
to compute multiple layers i of magic state distillation. Each layer uses a
surface code with distance di.

nist security framework 44

[BK05] Bravyi and Kitaev, “Universal quan-
tum computation with ideal Clifford gates
and noisy ancillas”

[Nat17] National Institute for Standards and
Technology, Post-Quantum Cryptography Call
for Proposals

[Zal99] Zalka, “Grover’s quantum searching
algorithm is optimal”

[GE21] Gidney and Ekerå, “How to factor
2048 bit RSA integers in 8 hours using 20
million noisy qubits”

[Jaq+20] Jaques et al., “Implementing
Grover Oracles for Quantum Key Search on
AES and LowMC”

Definition 3.3.2 (Reed-Muller Distillation [FDJ13, Sec. II]). Let di be a
distance of a surface code of the ith layer of magic state distillation. The Reed-
Muller-15-to-1 [BK05] distillation requires 10di surface code cycles for each
layer and requires 16 · 15i−1 logical qubits.

3.4 nist security framework

As part of their call for proposals, NIST [Nat17] defined five security cat-
egories corresponding to the hardness of breaking AES and SHA. When
considering quantum algorithms, they expressed this hardness in terms of
G-cost, assuming a MaxDepth limit, i. e., a limit to the depth of a quantum
circuit available to an attacker. The five security levels along with the limi-
tation on quantum circuit depth according to MaxDepth are presented in
Table 3.1,

Table 3.1: Security categories as suggested by NIST [Nat17, page 18].

Security
Category

As difficult
to break as

quantum
gates

classical
gates

I AES128 2170/MaxDepth 2143

II SHA256 — 2146

III AES192 2233/MaxDepth 2207

IV SHA384 — 2210

V AES256 2274/MaxDepth 2272

— SHA512 — 2274

We investigate the cost of quantum algorithms when imposing the limit
MaxDepth to the maximum depth a circuit can achieve while maintaining
state coherence. This consideration follows from observing that currently
state decoherence seems to be one of themain hurdles to achieving large-scale
quantum computation. As part of the call for proposals for its post-quantum
cryptography standardization process, NIST [Nat17] proposed the three
possible values of 240, 264 or 296 for MaxDepth, corresponding to the “[...]
approximate number of gates that presently envisioned quantum computing
architectures are expected to serially perform in [...]”[Nat17, Sec. 5.A.4] a
year, a decade or in a millennium, respectively.

This limitation means that care should be paid to any circuit paralleliza-
tion required to stay within MaxDepth circuit depth when measuring the
cost of long-running quantum algorithms as these do not always trivially
parallelize, such as in the case of Grover’s search [Zal99]. Accordingly, any
quantum computation requiring a deeper circuit would run multiple circuits
in parallel or sequence, if possible.

We consider that the depth of the circuit is a good representation of the
time needed to run the algorithm. As a result, we assume all gates that are
executed on independent states are computed in parallel as is common in
similar estimations [GE21; Jaq+20]. Respectively, the number of quantum
gates to break AES is estimated by NIST to be 2X/maxdepth, for example
2170/240 = 2130 for AES-128 as given in Table 3.1. A more nuanced analysis
of the cost of breaking AES was given by [Jaq+20], resulting in the numbers
of Table 3.2, which are the basis for evaluating the security of KEMs.

nist security framework 45

Table 3.2: Analysis of GCost to break AES under MaxDepth [Jaq+20, Table 10, 12].

MaxDepth AES Variant GCost

240 AES-128 1.07 · 2117

240 AES-192 1.09 · 2181

240 AES-256 1.39 · 2245

264 AES-128 1.07 · 293

264 AES-192 1.09 · 2157

264 AES-256 1.39 · 2221

296 AES-128 1.34 · 283

296 AES-192 1.09 · 2126

296 AES-256 1.39 · 2190

∞ AES-128 1.34 · 282

∞ AES-192 1.50 · 2115

∞ AES-256 1.38 · 2148

Limits of the NIST Metrics. The NIST metrics were designed to give
a security goal and allow comparisons between candidates. As all metrics,
part of them is arbitrary, and they were not designed to accurately define
what could be computable in the long term. In particular, the classical and
quantum security levels are incomparable, and a break of a system due to
a quantum attack does not imply the most efficient way to attack it will
be, in the long run, quantum. Still, post-quantum cryptography has to do
some optimistic assumptions on the capabilities of quantum computers, as
otherwise pre-quantum schemes would suffice.

Parts of this chapter have been taken verba-
tim from [TD20a; TD20b; BT21a; BT21b;
Bin+24; Bin+23].

[Agg+17a] Aggarwal et al., A New Public-Key
Cryptosystem via Mersenne Numbers

[Sze17] Szepieniec, Ramstake

[Agg+17b] Aggarwal et al., Mersenne-
756839

4
Post-Quantum Cryptography

4.1 mersenne number based cryptography

In 2017, [Agg+17a] introduced Mersenne number-based cryptography,
which was based on the new “Low Hamming Combination” intractability as-
sumption. The cryptosystems get their name from the modulus, a Mersenne
number, which is defined as a number of the form p = 2n − 1, with n an
integer. The NIST post-quantum competition featured two Mersenne-based
KEMs, Ramstake [Sze17] and Mersenne-756839 [Agg+17b], the security
of which was based on a variant of this new assumption. In Chapter 5 we
present an attack on these submissions.

A notable property of arithmetic modulo a Mersenne number is that
the Hamming weight (HW), defined as the number of ones in the binary
representation, does not increase during modular operations in the ring
Z/pZ. Further, multiplication by a power of two in this ring is correspond
to a rotational shift, i. e., performing 2ix mod p is equivalent to rotating
the binary representation of x by i positions, making for efficient arithmetic
operations. The binary representation of integers in the ring Z/pZ have bit
length at most n.

4.1.1 Computational Hardness Assumptions

In the remaining of this part, we will denote the HW of the binary represen-
tation x of an integer by hw(x). Likewise, the bytewise Hamming weight
of a binary string x will be written as hw8(x), which returns the number of
nonzero bytes in x.

Let p be a Mersenne prime, let a, b be integers with bitwise Hamming
weight ω, and G a random group element in Z/pZ. The Mersenne Low
Hamming Combination (LHC) Assumption in Definition 4.1.1 states, that
it is computationally difficult to distinguish aG+ b mod p from a random
number in Z/pZ, when given an integer and G.

Definition 4.1.1 (Mersenne Low Hamming Combination Assumption,
abridged from [Agg+17b, Def. 5]). Let 2n − 1 be a Mersenne prime and ω
an integer such that 4ω2 < n ≤ 16ω2. The advantage of a PPT adversary to
distinguish the two tuples(︄[︄

G1

G2

]︄
,

[︄
G1

G2

]︄
· a+

[︄
b1

b2

]︄)︄
or

(︄[︄
G1

G2

]︄
,

[︄
R1

R2

]︄)︄
,

47

mersenne number based cryptography 48

KeyGenM (1λ)

1 : sd $←− {0, 1}256
2 : G← genG(sd)
3 : a, b← HWω(Zp)×HWω(Zp)
4 : PD ← aG+ b mod p
5 : return (pk := (sd, PD), sk := (a, b, sd,))

Figure 4.1: Key generation for Mersenne-based public-key encryption.

EncryptM (pk := (sd, PD),M ; r)

1 : r1, r2 ← split(r)
2 : c, d← HWω(Zp; r1)×HWω(Zp; r2)
3 : G← genG(sd)
4 : PE ← cG+ d mod p
5 : S ← cPD mod p
6 : M ecc, hM = Encode(M)
7 : encM = M ecc ⊕ S [0 : |M ecc|]
8 : return (ct := (encM , PE , hM))

DecryptM (ct, sk := (a, b, sd))
1 : G← genG(sd)
2 : S′ ← aPE mod p
3 : M ′

ecc = encM ⊕ S′ [0 : |encM |]
4 : M ′ = Decode(M ′

ecc, hM)
5 : return M ′

Figure 4.2: Encryption and Decryption algorithm for Mersenne-based public-key
encryption.

[FO99] Fujisaki and Okamoto, “Secure In-
tegration of Asymmetric and Symmetric En-
cryption Schemes”

[Sze17] Szepieniec, Ramstake

[Agg+17b] Aggarwal et al., Mersenne-
756839

[FO13] Fujisaki and Okamoto, “Secure In-
tegration of Asymmetric and Symmetric En-
cryption Schemes”

where G1, G2, R1 and R2 are chosen uniformly random in Z/pZ and a, b1
and b2 are uniformly random elements in Z/pZ with Hamming weight ω, is
at most O(2−ω).

The best known algorithm to solve the LHC Assumption is the Slice-and-
Dice attack, which we discuss in Section 4.1.3.

4.1.2 Mersenne number Encryption Scheme

With the LHC at hand, we define a generalized Mersenne prime encryption
scheme which can be used to build an IND-CCA secure KEM using the
Fujisaki-Okamoto transformation [FO99].

Choose p as a Mersenne prime and let genG() be a pseudo-random gen-
erator that expands a seed sd into a uniformly random element in Z/pZ.
Let H and H′ be hash functions modeling random oracles. Let Encode and
Decode be a pair of Error Correcting Code (ECC) functions that respectively
encode a binary string M into an encoded binary string MECC, and that
decode a noisy version of the latter string back into the original such that
up to t errors can be corrected. Let HWω(Zp) be a function that samples
a uniformly random string in Zp with Hamming weight exactly ω; and let
HWω(Zp, r) denote the function where the output is generated pseudoran-
domly from r. Let split(x) denote splitting the input into two equally sized
substrings. Let furtherM ∈ {0, 1}n be a message and r ∈ {0, 1}λ a random
string. Given these functions, the generalized Mersenne prime scheme is
defined via the Algorithms 4.1 to 4.2. The public key of the encryption
scheme is pk = (sd, PD := aG+ b mod p), the secret key is sk := (sd, a, b)

Given these algorithms one can construct the two NIST submissions,
[Sze17; Agg+17b], both of which use the Fujisaki-Okamoto transform [FO99;
FO13] to achieve IND-CCA security. The transformation introduces a re-
encryption step in Figure 4.2, which may cause the algorithm to either return

mersenne number based cryptography 49

[Sze17] Szepieniec, Ramstake

[Agg+17b] Aggarwal et al., Mersenne-
756839

[Beu+19] Beunardeau et al., “On the Hard-
ness of the Mersenne Low Hamming Ratio
Assumption”

[Boe+18] Boer et al., “Attacks on the AJPS
Mersenne-Based Cryptosystem”

[GN08b] Gama and Nguyen, “Predicting Lat-
tice Reduction”

the message M ′, or a decryption failure denoted as ⊥. This happens for
[Sze17] with probability 2−64 and for [Agg+17b] with probability 2−246.

4.1.3 Security

The security of both Mersenne-based submissions, [Sze17; Agg+17b], is
based on the LHC Assumption from Definition 4.1.1. In the same year of
introducing Mersenne number cryptosystems (cf. Section 4.1), the Slice-and-
Dice algorithm was introduced by Beunardeau et al. [Beu+19] and later
refined by [Boe+18]. This algorithm is the most well-known procedure to
recover the secrets of a Mersenne number cryptosystem given only the public
key. In brief summary, the idea revolves around partitioning the secret key
into random parts from which a lattice is constructed. If the partitioning
fulfills a certain property, then the secrets correspond to short vector in
the lattice that fall into the approximation factor bound [Boe+18, Lem.
5], allowing LLL to output these unique, shortest vectors but still run in
polynomial time. The bottleneck is guessing a partitioning which fulfills this
property, and requires a number of guesses exponential in the Hamming
weight of the secrets.

Attack Description. The original procedure by Beunardeau et al. was
applied to a single-bit encryption scheme. We assume as input the public key
pk := (G,H = aG+ b mod p). Consider the binary string representation
of the sparse integer a. One can partition this string into multiple parts,
each representing a substring starting at bit position pi. Interpreting the
ith substring a[pi : pi+1] as an integer Xi gives a representation of the
sparse integer as a =

∑︁
i 2

piXi. Consider a balanced partition, i. e., all
parts have similar bit length, P := {p1, p2, ..., pk}, pi < pi+1, pi ∈ [0, n) of
a (respectively Q := {q1, q2, ..., ql} of b). Then we consider the following
lattice:

La,b,H =

{︃
(X1, ..., Xk, Y1, ..., Yl)

⃓⃓⃓⃓
∑︂k

i=1
2piXiG−

∑︂l

j=1
2qjYj ≡ H mod p

}︃
.

(4.1)

The lattice defined in Equation (4.1) contains vectors representing the secrets.
A basis that generates the lattice can be constructed as shown in Equation
(4.2). ⎛⎜⎜⎜⎜⎜⎜⎝

0 −2p1GH−1 mod p

I
...

...

0 −2qlGH−1 mod p

0 . . . 0 1 −H
0 . . . 0 0 p

⎞⎟⎟⎟⎟⎟⎟⎠ (4.2)

Furthermore, the lattice La,b,H contains malicious vectors of the form
(0, .., 2pi+1−pi ,−1, 0, Ŷ1, ..., Ŷk, ..., 0) , such that

∑︁k
j Ŷj = H. We call them

malicious, because they are the shortest vectors retrieved by the LLL algorithm
if care is not taken by constructing the partition. Boer et al. show that these
vectors have norm about 2|Pi|, 2|Qi| for parts Pi, Qi. They use a heuristic due

mersenne number based cryptography 50

[Beu+19] Beunardeau et al., “On the Hard-
ness of the Mersenne Low Hamming Ratio
Assumption”

to [GN08b] to show that the malicious vectors are not the shortest vectors,
if and only if the bit-length of the norm of each of the parts is larger than
n/d+Θ(log n), where d ≈ 2ω is the rank of the lattice. To see this, consider
a balanced partition containing ω parts, such that each part has bit length
n/ω. If the norm of the malicious vector has bit-length n/2ω + θ(log n), the
secrets have smaller norm only, if all ones in the binary expansion fall into
the lower n/2ω bits of each part, such that the norm also has bit-length at
most n/2ω. Intuitively, sampling random partitions results in a successful
attack if all ones of the secret fall into the lower half of each part.

In the following we denote a part as correct, if it represents a subset of
the binary expansion of a secret and if all its ones are positioned in the lower
half of the part. A partition is correct, if all parts are correct. Figure 4.3
shows an example for partitioning the binary representation of a string, such
that the integer in each individual parts have either short bit-length if the
ones fall into the lower half, or large bit-length otherwise.

msblsb
6613066

msblsb
1592

“Large” parts

“Small” parts

Figure 4.3: The figure shows a partitioning of the binary representation of an integer
such that each individual part corresponds either to a large integer (top), or small
integer (bottom). The black boxes represent the ones, the white boxes the zeros in
the binary expansion.

Beunardeau et al. [Beu+19, Sec 2.2, Remark 1] generalized the approach
to imbalanced partitions tolerating parts with larger norms and others with
smaller norm. This can be achieved by scaling all parts relative to their
size. Let Kmax = maxi (|Ri|) , Ri ∈ {P1, ..., Pk, Q1, ..., Ql} denote the
bit length of the largest part. Then the scaling parameter is defined as
κPi

= Kmax − |Pi| (respectively for Qi). A scaled vector in the lattice is
of the form (κP1X1, ..., κPk

Xk, κQ1Y1, ..., κQl
Yl). Consider the norm of a

malicious vector resulting from a part of small bit length. The technique
ensures that its norm is scaled to exceed the norm of vector resulting from a
part with large bit length which has is ones only in the lower half.

The algorithm is summarized in Figure 4.4, which finds a partitioning
for the secrets a, b such that the norm of the resulting vector is small, in
particular such that each one of the secret falls into the lower half of a part.

SliceAndDice(pk, G, p)
1 : while True
2 : P,Q $←− Z2ω

n ▷ Sample parts.
3 : B ← construct basis for La,b,H from P,Q

4 : B∗ ← LatticeReduction(B) ▷ Returns short vectors.
5 : if ∃ b∗a, b∗b ∈ B∗ s.t. b∗aG+ b∗b = pk
6 : return b∗a, b

∗
b

Figure 4.4: Slice-and-Dice algorithm to attack Mersenne-based cryptosystems.

hash-based cryptography 51

[TS19] Tiepelt and Szepieniec, “Quantum
LLL with an Application to Mersenne Num-
ber Cryptosystems”

[Boe+18] Boer et al., “Attacks on the AJPS
Mersenne-Based Cryptosystem”

1Any SVP oracle can be used. [Beu+19]
showed that the LLL algorithm is sufficient,
since it performs the lattice reduction in poly-
nomial time.

[CG20] Coron and Gini, “Improved crypt-
analysis of the AJPS Mersenne based cryp-
tosystem”

[Beu+19] Beunardeau et al., “On the Hard-
ness of the Mersenne Low Hamming Ratio
Assumption”

[DAn+19b] D’Anvers et al., “Timing Attacks
on Error Correcting Codes in Post-Quantum
Schemes”

[Lam79] Lamport, “Constructing Digital Sig-
natures from a One Way Function”

[BDH11] Buchmann, Dahmen, and Hülsing,
“XMSS - A Practical Forward Secure Signa-
ture Scheme based on Minimal Security As-
sumptions”

[Ber+14] Bernstein et al., “SPHINCS: prac-
tical stateless hash-based signatures”

We review a variant of the Slice-and-Dice attack in Chapter 5 to estimate the
cost of recovering the secret key with additional information provided by our
attack.

Cost. Briefly speaking, the advantage of an adversary to find the secret key
of the encryption scheme is bounded by the Hamming weight ω of the sparse
integers. Finding such a partition is difficult due to the unknown structure of
the secrets the instantiations of the Mersenne number cryptosystem submit-
ted to the NIST competition. It is known to be classically bounded byO(22ω),
and quantumly bounded by O(2ω) [TS19]. This means that the schemes
maintain at least 256-bits of classical and 128-bits of quantum security.

[Boe+18] gave a precise analysis and bound the fraction r of the part
containing positions of ones, that would guarantee that the secret vectors
are also the shortest, and that would thus allow to extract the secret using
lattice reduction1. The exact value depends on the rank of the reduced lattice
and is omitted here (cf. [Boe+18, Sec. 5.3] for details). For the sake of
simplicity assume this fraction to be r ≈ n/2ω. Let k = l = ω be the number
of parts, then the number of correct positions is kr/n for a and lr/n for b.
For a randomly chosen partition the probability of being correct is about(︃

kr

n

)︃ω

·
(︃
lr

n

)︃ω

≈
(︃

kl

(2ω)2

)︃ω

=

(︃
1

2

)︃2ω

.

It follows that the expected number of guesses to perform the attack is
O(22ω). The cost is reduced to O(21.75ω) if only the indistinguishability of
ciphertexts is attacked [CG20].

Enclosing the Slice-an-Dice attack into a quantum amplitude amplifica-
tion (cf. Section 3.1.1), as initially suggested by [Beu+19] and later refined
by [TS19], requires Grover iterations corresponding to the square root of
the number of guesses, i. e., O(2ω).

Other attacks on Mersenne number cryptosystems have been proposed,
however, these were targeting the implementations of the error correcting
code [DAn+19b] exploiting timing variations to extract the secret keys.
These attacks are not relevant for our novel attack exploiting decryption
failures, which we introduce in Section 5.2.

4.2 hash-based cryptography

The concept of digital signatures, the security of which is based on the
difficulty of inverting one-way functions, was first introduced by [Lam79] as
a One-Time-Signature (OTS). Subsequently, these one-time signatures were
developed into multi-use signature schemes utilizing a Merkle Tree, a binary
tree structure where each child node is the result of applying a collision
resistant function to its parent nodes. Modern implementations include
the XMSS [BDH11] and the SPHINCS signature scheme [Ber+14], with
a variant of the latter submitted as a candidate of the NIST post-quantum
competition, and which was selected in 2022 as a finalist.

In the real world, one-way functions are realized with cryptographic
hash functions. Consequently, digital signatures can be constructed from
cryptographic hash functions, the security of which is based on the collision

hash-based cryptography 52

Table 4.1: SPHINCS+ parameters with security parameter in bits, abridged from [Hül+20, Table 3]

Instantiation in SPHINCS+-
Parameter Usage 128s 128f 192s 192f 256s 256f

λ Security parameter 128 128 192 192 256 126
w Winternitz parameter 16 16 16 16 16 16
h Height of hypertree 63 66 63 66 64 68
d Number of layers of hypertree 7 22 7 22 8 17
k Number of FORS trees 14 33 17 33 22 35

[Hül+20] Hülsing et al., SPHINCS+-
Submission to the 3rd round of the NIST post-
quantum project

[HRS16] Hülsing, Rijneveld, and Song, “Mit-
igating Multi-target Attacks in Hash-Based
Signatures”

[Nat20] National Institute for Standards
and Technology, Post-Quantum Cryptogra-
phy Round 1

resistance or the second-preimage resistance. Since cryptographic hash
functions are believed to be mostly resistant to quantum attacks, i. e., they
are subject to the quadratic quantum-speedup for preimage search, or cubic
for collision search from quantum amplitude amplification (cf. Section 3.1.1),
post-quantum signatures can be conjectured to be subject to this speedup
only too.

4.2.1 Computational Hardness Assumption

The security of SPHINCS+ is based on the post-quantum distinct-function,
multi-target second-preimage resistance of a tweakable hash function [Hül+20,
Sec. 9.1]. A tweakable hash function is a keyed hash function (cf. Def-
inition 2.2.9), where each call to the hash function includes a key that
determines the specific function used. [HRS16] shows that the security
of SPHINCS+ corresponds to the hardness of the (single-function, single-
target) keyed second-preimage resistance of a keyed hash function (cf. Defi-
nition 2.2.10). That means, that the attack cost is independent of the number
of targets.

4.2.2 SPHINCS+ Signature Scheme

The SPHINCS+ signature scheme[Hül+20] is a stateless, hash-based signa-
ture scheme, that was submitted as a candidate to the NIST post-quantum
competition [Nat20] in 2017, and selected as a finalist in 2022. The scheme
combines multiple hash-based signature schemes, namely a WOTS, FORS
and XMSS scheme, which are combined into a virtual hypertree. The scheme
is constructed around various parameters which determine the dimensions
of the individual signature schemes and of the hypertree. For the purposes
of this manuscript, the parameters from Table 4.1 are relevant. Further,
throughout the scheme we will use the following variables:

Address ADRS ∈ {0, 1}256. The address ADRS is a fixed length value that
ensures that the hash functions calls for each key pair and each position
in the virtual tree are independent. The address is used in SPHINCS+

[Hül+20, Sec. 2.7.3] to determine the hash function in WOTS+ and
FORS schemes, the compression function of the WOTS+ and FORS
public keys, as well as the compression function in the XMSS trees.

Key material The public key is vkSPHINCS+ , the secret key skSPHINCS+ . Addi-
tionally, both public and secret key have a string “seed” sd ∈ {0, 1}λ

as part of the key material.

hash-based cryptography 53

[Hül+20] Hülsing et al., SPHINCS+-
Submission to the 3rd round of the NIST post-
quantum project

[Köl+16] Kölbl et al., “Haraka v2 - Efficient
Short-Input Hashing for Post-Quantum Ap-
plications”

[NIS15] NIST, SHA-3 standard: Permutation-
based hash and extendable-output functions

2The exact computation of the checksum
is not relevant for this manuscript.

Hash Function Instantiations. SPHINCS+ deploys multiple tweakable
hash functions [Hül+20, Sec. 2.7.1] of the form

Hi : {0, 1}λ × {0, 1}256 × {0, 1}i·λ → {0, 1}λ , (4.3)

where i depends on the size of the input to be hashed.
While any (post-quantum) keyed hash function that is second-

preimage resistant is suitable to be used to construct post-quantum sig-
natures, SPHINCS+ proposed to use either Haraka [Köl+16], SHA-256 or
SHAKE-256 [NIS15]. The Haraka hash function is an AES based hash func-
tion with two variants, Haraka-256 and Haraka-512, mapping either from a
256 or 512 bits state block to a 256 bit output block. The SHAKE-256 hash
function is an expandable hash based on the SHA-3 hash function, which
in turn builds on the Keccak permutation. The exact inner working of the
hash functions are not relevant for this manuscript and can be found in the
respective specifications [NIS15; Köl+16]. We do not consider the SHA-256
instantiation of SPHINCS+.

Winternitz One Time Signatures. A WOTS in SPHINCS+ [Hül+20, Sec.
3.5] uses the hash function H1 to construct a hash chain that comprises the
secret key skWOTS+ , the signature σWOTS+ and the public key vkWOTS+ . The
WOTS scheme is configured with theWinternitz parameterw and the security
parameter λ, the latter of which determines the length of the bitstrings which
are evaluated with the hash function H1. Figure 4.5 gives an example for
one of such hash chains, along with the position of the secret and public
key, and the signature, where H1 is instantiated with either SHAKE-256,
SHA-256-2 or Haraka.

In the SPHINCS+ scheme, the WOTS+ is used to sign a stringMX and
its checksum checkMX

. Let X =MX ||checkMX
be the concatenation of the

stringMX and its checksum2. The WOTS+ signs the string X by splitting it
into multiple blocks and iterating an individual hash chain for each block.
The exact algorithms of key generation, signing and verification are not
important. We highlight the parts important to follow this manuscript:

Key Generation The private key is skWOTS+ and consists of λ-bit blocks
skWOTS+,i, each of which corresponds to an initial node in a hash chain.
The public key vkWOTS+ is the hash of the collection of hashes vkWOTS+,i

for all blocks i at the end of a hash chain as described in the signature
procedure. The public key is derived separately from the secret key.

Signature To generate a signature σX
WOTS+ = (σX1

WOTS+,1
, σX2

WOTS+,2
, ...) the

string X is divided into blocks of bitlength w. Let Xi be the ith block
which, interpreted in base w, corresponds to an integer between 0

and w − 1. Then the signature of the ith block is the output of (Xi)w

(where (Xi)w denotesXi in basis w) recursive evaluations of the hash
function H1 on input skWOTS+,i, i. e.,

σXi

WOTS+,i
= H1(...H1(vkWOTS+ .sd,ADRS, skWOTS+,i)) ,

where the hash function is applied (Xi)w times.

The ith public key vkWOTS+,i is the last node in the hash chains, after a
total of w evaluations.

hash-based cryptography 54

σmd
WOTS+ = (σ(X0)w , σ(X1)w , ...)

v0 v1 v(Xi)w vw−2 vw−1
H1 · · ·

H1 · · ·
H1 H1

skWOTS+,i
σ(Xi)w vkWOTS+,i

Figure 4.5: Structure of one hash chain of a WOTS instance, with the ith secret- and
public key, the ith signature and the ith block of the string X.

[Hül+20] Hülsing et al., SPHINCS+-
Submission to the 3rd round of the NIST post-
quantum project

Verification To verify a WOTS+ signature in the SPHINCS+ scheme, the
hash chain for each signature σ(Xi)w is advanced the remaining w −
(Xi)w iterations to compute the public key vkWOTS+,i, which is then
used to compute a WOTS+ public key vkWOTS+ . Subsequently, the
computed public key is compared to the genuine public key.

Forest of Random Subsets. A FORS signature scheme [Hül+20, Sec.
5] is a collection, i. e., a forest, of binary hash trees that sign a message
digest md. In case of the SPHINCS+ scheme the latter is the output of a hash
function. The scheme is defined by a number k of private key sets and a
number t of elements in each of these sets. Each of the k sets corresponds to
one binary hash tree with a root ri, i ∈ [0, k − 1), while t is the number of
leaves of each such tree. A FORS signature signs multiple blocks Xi, i ∈ [k],
of a message digest md. Each such block Xi is associated with the jth secret
key, which acts as the leaf node of the ith tree. The exact mapping of blocks
to leaves is not relevant for this manuscript. Figure 4.6 shows an example
forest and a signature, where only the first tree is made explicit.

Key Generation The secret key skFORS = {ski,jFORS}i∈[k],j∈[t] is a set of k · t
random strings. Each such random strings represents a leaf in one of
the trees. The public key vkFORS is the hash function output of all of
the k root nodes {ri}i of the trees.

Signature A signature σmd
FORS is a collection of k strings ski,jFORS (where j

denotes the index of a leaf in a FORS tree) along with an authentication
path AuthFORS,i through the ith binary tree, i. e., all siblings on the path
from the leaf to the root node.

To sign a message digest md, the digest is first split into k bit strings
each representing a number i between 0...t− 1, thus corresponding to
the ith private key. Then for each private key an authentication path
in the kth tree is computed, meaning that each sibling node required
to reconstruct the root of the ith tree is computed using function H2.
The final signature consists of the k private key values along with the
authentication paths.

hash-based cryptography 55

Verification A signature is verified by computing the public key from the
secret string and the authentication path, where the compressed public
key is the hash Tk of the roots of all k trees.

vkmd
FORS ← H(vk.sd,ADRS, rFORS,1, rFORS,2, ..., rFORS,k) .

H1

H2

vkFORS

Hk

σmd
FORS = (sk(1,1)FORS,AuthFORS,1

sk(2,·)FORS,AuthFORS,2
...

sk(k,·)FORS,AuthFORS,k) r1

FORS tree 1

sk(1,1)FORS sk(1,2)FORS sk(1,3)FORS sk(1,4)FORS

rk

FORS tree k

Figure 4.6: The forest of a FORS signature spanning k binary hash trees. Each
signature is a collection of k a private key strings sk·,·FORS along with the authentication
path (shaded nodes) in the tree. All FORS trees are of equal size and simply scaled
down for depiction.

eXtended Merkle Signature Scheme. An XMSS in SPHINCS+ is a
binary hash tree where each node is a λ bit string and the leaves are WOTS+

public keys. Recall that h is the height of the SPHINCS+ hypertree and d the
number of layers in the hypertree. The height of each XMSS tree is h′ = h/d,
The tree is constructed using the hash functions H1 and H2.

The leaves of the tree are WOTS+ public keys, where each tree has 2h
′

leaves. The first node, i. e., the node on the lowest level in the hashtree, is
the output of evaluating H1 on a WOTS+ public key.

Key Generation The secret key is a seed that allows to generate all these
WOTS+ instances, which in turn allows to compute the hash tree. The
public key vkXMSS,i is the root of this hash tree.

Signature A signature contains a WOTS+ signature along with an authen-
tication path, i. e., the siblings on the path from the leaf through the
binary hash tree required to compute the root. The string idx deter-
mines the WOTS+ instance to be used for the signature.

Verification An XMSS scheme does not have a separate Verify function, as
it only requires to compute the public key from the signature scheme,

hash-based cryptography 56

σ
rXMSSi+1

XMSS,i = (σ
rootXMSS,i+1

WOTS+,i,j ,AuthXMSS,i)

vkXMSS,i

vkWOTS+,i

XMSS tree 1

Figure 4.7: Binary hash tree of a XMSS scheme where the leaves are WOTS+ public
keys. The signature σ

rXMSSi+1

XMSS,i contains a WOTS+ signature of the root of another
XMSS tree and an authentication path to compute the root node.

[Hül+20] Hülsing et al., SPHINCS+-
Submission to the 3rd round of the NIST post-
quantum project

i. e., for the two topmost nodes p1, p2 in the binary tree before the
root, the public key is computed as:

vkSPHINCS+ .root← H(vkSPHINCS+ .sd,ADRS, p1, p2) .

The WOTS+ instances signs the root node of another XMSS instance. Fig-
ure 4.7 shows an explanatory XMSS tree.

HyperTree. The SPHINCS+ [Hül+20, Sec. 4.2] scheme combines all
signatures into one hypertree of total heigth h which has d layers of XMSS
trees. Accordingly, top-most layer d − 1 has one XMSS tree. The lowest
layer, layer 0, has 2h−h′

= 2h−h/d XMSS trees. Each XMSS tree is associated
with 2h

′
WOTS+ instance. The instances used during a signing procedure is

determined by the address ADRS.
Each XMSS tree signs the root node of a XMSS tree in the next layer. The

lowest layers signs a FORS public key, which in turn signs a message digest.

SPHINCS+. The SPHINCS+ signature scheme consists of a hyper tree of
XMSS instances, WOTS+ instances and FORS instances, using both keyed
and tweakable hash functions. Figure 4.8 shows the complete SPHINCS+

hyper tree with the individual signature schemes.
The exact algorithms of key generation, signing and verification are not
important. We highlight the parts important to follow this manuscript:

Key Generation The public verification key is defined as vkSPHINCS+ =

(vkSPHINCS+ .sd, vkSPHINCS+ .root) consisting of a seed and a root node.
The secret key skSPHINCS+ = (skSPHINCS+ .sd, skSPHINCS+ .PRF, vk) consist
of a seed, the key of the PRF and the public key.

h
ash

-based
cryptograph

y
57

H(R, vk.root, vk.sd,M)

σMSPHINCS+ = (R, σvkFORS
HT , σmd

FORS)

extract
σXMSS,1 = (σ

rXMSS,2
WOTS+,1,Auth1)

σxmss,d = (σvkFORS
WOTS+,d,Authd)

Hash chain

vkSPHINCS+ .root

vkWOTS+,1

XMSS tree 1

rXMSS,d

vkWOTS+,d

XMSS tree d

vkFORS

rFORS,1 rFORS,k

M

md

Figure 4.8: Overview of a SPHINCS+ hypertree and a SPHINCS+ signature σM
SPHINCS+ on message M . The signature consists of a random string R used to generate an initial message

digest, a collection σvkFORS
HT of XMSS signatures σXMSS,i, and a FORS signature. Each XMSS signature σ

rXMSS,i+1

XMSS,i consists of a WOTS+ signature σWOTS+ and of an authentication path
Authi, the latter of which contains the siblings of the nodes in the path from the XMSS leaf to the respective root. The leaf of each XMSS tree, vkWOTS+ , can be computed from the
signature σrXMSS

WOTS+ by iterating the hash chain. The root of the FORS tree, vkFORS, can be extracted from the FORS signature σM
FORS.

hash-based cryptography 58

[Hül+20] Hülsing et al., SPHINCS+-
Submission to the 3rd round of the NIST post-
quantum project

[HRS16] Hülsing, Rijneveld, and Song, “Mit-
igating Multi-target Attacks in Hash-Based
Signatures”

[NIS15] NIST, SHA-3 standard: Permutation-
based hash and extendable-output functions

[Amy+16] Amy et al., “Estimating the Cost
of Generic Quantum Pre-image Attacks on
SHA-2 and SHA-3”

3A surface code cyle relates to the fault-
tolerant cost of a quantum computer, Sec-
tion 3.3.3

4A logic qubit cyle is the product of surface
code cyles and qubits used by a quantum
computer (cf. Section 6.1)

Signature A signature on a message M has the form

σM
SPHINCS+ = (R, σvkFORS

HT , σmd
FORS) ,

where R ∈ {0, 1}λ is a string.

To generate a signature on a message M, first a message digest is
computed:

md, idtree, idleaf ← Hmsg(R, vkSPHINCS+ .sd, vkSPHINCS+ .root,M) ,

where the values idtree, idleaf determine the FORS instance used to sign
the message digestmd. The hash functionHmsg is the only compressing
hash function in SPHINCS+ that maps from an arbitrary length to a
fixed length. Subsequently, (part of) the message digest md is signed
using a FORS signature, σmd

FORS, and the resulting public key vkFORS is
signed using the hypertree, resulting in σvkFORS

HT .

Verification To verify a signature, first the message digest is computed from
Hmsg, and then the FORS and hypertree signature are verified.

4.2.3 Asymptotic Security

The security of SPHINCS+ is quantified based on the number of hash function
invocations required to break the second preimage resistance. An estimate
of the concrete security of SPHINCS+ was given within the scope of the
NIST submission. The authors considered general attacks [Hül+20, Sec.
9.3.1] on the distinct-function multi-target second-preimage resistance of the
underlying hash functions. Let qH be the number of hash function invocations.
The success probability of a quantum adversary breaking the multi-target
second preimage resistance of a hash function is bounded by [HRS16, Prop.
2], [HRS16, Table 1, Col. 1] O

(︂
(q+1)2

2λ

)︂
. For SPHINCS+, this term is

bounded by [Hül+20, Sec. 9.3.]

Θ

(︃
(qarg + 1)2

28λ

)︃
.

4.2.4 Concrete Security

The security of SPHINCS+ is closely related to the security of the under-
lying hash functions, which is either SHA-256 − 256, SHAKE-256-256 or
Haraka512 [Hül+20, Sec. 9.1]:

The SHAKE-256 and SHA-256 variant of SPHINCS+ both provide a suffi-
cient amount of security for all 5 NIST security levels, SHAKE-256 claims 256
bit of security against classical second preimage attacks, if the output is “suf-
ficiently long” [NIS15, Sec. 2.4]. An analysis of the security of SHAKE-256
has been given in [Amy+16], whose result is the main motivation for our
work. They present a quantum circuit to implement a Grover search and
attack the 256-bit preimage resistance of the SHA3-256 hash function and
give concise and fault-tolerant estimates for the resources required to im-
plement such a circuit: They claim that their circuit requires 2153.8 surface
code cycles3 using 212.6 logical qubits, resulting in an overall requirement of

lattice-based cryptography 59

[Köl+16] Kölbl et al., “Haraka v2 - Efficient
Short-Input Hashing for Post-Quantum Ap-
plications”

[Ber+11] Bertoni et al., Cryptographic
sponge functions

[CNS17] Chailloux, Naya-Plasencia, and
Schrottenloher, “An Efficient Quantum Colli-
sion Search Algorithm and Implications on
Symmetric Cryptography”

[Ajt96] Ajtai, “Generating hard instances of
lattice problems (extended abstract)”

5An in-depth introduction into lattices can
be found here [Pei16].

about 2166.4 logical-qubit-cyles4 using 2128 black-box queries for a 256-bit
preimage search. Their results may be adapted to estimate the work required
to break the hash function for the SPHINCS+ signature scheme. However,
there is still considerable ambiguity on the specific construction to forge a
signature.

Haraka features two variants, Haraka-128 and Haraka-256, both of
which claim 256 bits of security against classical and 128 bits of security
against quantum attackers [Köl+16, Sec. 2]. Note that SPHINCS+-Haraka
only achieves security level I, II (cf. Table 3.1), due to the capacity of the
sponge construction in SPHINCS+-Haraka using only 256 bits. Attacking the
second-preimage-resistance as described in [Ber+11] only requires about
2129.5 classical hash function invocations, producing a collision on the in-
ternal state of the hash function in the process. The trade-off presented by
[CNS17, Thm 2] results in about 2102 iterations for a collision search with
λ = 256 on Haraka. The quantum security of Haraka has not, to the best of
our knowledge, been analyzed explicitly.

4.3 lattice-based cryptography

Lattice-based cryptography was introduced by Ajtai [Ajt96] in 1996, who
presented the first worst-case to average-case reduction of lattice problems
along with a first cryptosystem. The initial results were extended and im-
proved, resulting in many different computational hardness assumption for
both encryption and authentication presupposes. Noticeably, three out of
four of NIST’s finalists are based on lattice problems.

A lattice5 L ⊆ Rn is a discrete additive subgroup (Rn,+) generated
by a set of linearly independent vectors B = (b1, . . . , br) ∈ Rn×r, bi ∈
Rn called a basis. We denote B∗ the result of performing Gram-Schmidt
orthogonalization on B. The lattice is defined as L = {

∑︁r
i=1 bici|ci ∈ Zr}.

The lattice is said to have dimension n and rank r. We call c = (c1, ..., cr)
⊤

the coefficient vector of L. All lattices in this work are full-rank integer
lattices L ⊆ Zr with n = r. We denote ||v|| =

(︁
v21 + ...+ v2n

)︁1/2 the
euclidean norm of a vector. We let λ1(L) = minv∈L\{0}||v|| denote the first
minimum of the lattice.

4.3.1 Computational Hardness Assumption

One of the most central problems in the setting of lattice-based cryptography
is the shortest vector problem from Definition 4.3.1.

Definition 4.3.1 (SVP). Given a basis B of a lattice L, find the shortest
non-zero vector v ∈ L such that ||v|| ≤ λ1(L).

The approximate shortest vector problem, Shortest Vector Problem
(SVP)γ , is defined similarly, asking to find a vector that is γ-close to the
first minimum, i. e., such that ||v|| ≤ γλ1(L). Another problem is the (ap-
proximate) decisional (γ)-GapSVP problem, which asks to determine if the
first minimum of the lattice is within a given bound r, i. e., λ1(L) ≤ γr.
While the GapSVP problem was shown to be NP-hard [Ajt96] with a ran-
domized reduction, the case for the approximate γ−GapSVP problem is a

lattice-based cryptography 60

[APS15a] Albrecht, Player, and Scott,On The
Concrete Hardness Of Learning With Errors

[SB17] Schmidt and Bindel, Estimation of the
Hardness of the Learning with Errors Problem
with a Restricted Number of Samples

[Alb+17] Albrecht et al., Revisiting the Ex-
pected Cost of Solving uSVP and Applications
to LWE

[LM09] Lyubashevsky and Micciancio, “On
Bounded Distance Decoding, Unique Short-
est Vectors, and the Minimum Distance Prob-
lem”

[Kan87] Kannan, “Minkowski’s Convex Body
Theorem and Integer Programming”

bit more nuanced. Specifically, for γ ∈ 2O(n) the famous LLL algorithm (cf.
Section 4.3.3) solves the problem in polynomial time, but it is NP-hard for
any constant approximation γ ∈ O(1). Figure 4.9 summarizes for which
instantiations of γ the approximate GapSVP is believed to be difficult to solve.

γ = γ(n)

O(1)

Hard
poly(n)

Cryptography
2n

Easy

Figure 4.9: “Simplified summary of the complexity of the (γ-Gap)CVP on lattices of
dimension n for constant, polynomial, and exponential approximation factor γ [...].”
Figure rebuild and text verbatim from [Ben23, Fig. 1]. The values gives the size of γ.

Instead of building directly on a variant of the (gap) shortest vector
problem, most cryptographic protocol build on the hardness of either search
Learning with Errors (LWE) (c.f. Definition 4.3.2) or decision LWE (c.f.
Definition 4.3.3), both of which can be reduced to a variant of the SVP.

Definition 4.3.2 (LWE Distribution). Let nlwe, q, B be a positive integers and
χ = [−B ... B] define a distribution. Let s $←− Zn

q and e $←− χ be sampled
accordingly. Then we denote As,χ the distribution (A, zi := A⊤ · s + e) ∈
Znlwe

q ×Zq.

Definition 4.3.3 (LWE). Let nlwe, q be positive integers and let (A, zi) be
sampled from As,χ. The decision-LWE (dLWE) problem ask to distinguish
samples from As,χ from the uniform distribution on Znlwe

q ×Zq. The search-
LWE (sLWE) problem asks to find the vector s from the distribution A.

We sketch a reduction from LWE to SVP in the form of the primal attack
[APS15a; SB17; Alb+17]. The input is a set of LWE samples over the lattice
used in the cryptosystem.

1. The search version of LWE can be rephrased as a Bounded Distance
Decoding (BDD) problem [LM09]: Given a lattice basis B and a vec-
tor z with the promise that z is close to lattice vector v ∈ L(B):
dist(z,B) < αλ1(B), where dist(z,B) is the distance from z to the
lattice generated by B, the goal is to find the vector v. In the setting
of LWE, the lattice point z is close to a linear combination of columns
of A, i. e., has a distance to z = A⊤s bounded by the distribution χ.

2. The samples are embedded into a lattice that admits the target vector
(usually the error e) as a short vector. Once the error vector e is known,
AT s = zi − e can to solved for s via Gaussian elimination. Given a
number r of LWE samples (A, z = As+ e mod q) they are embedded
into a lattice that admits the vector v = (et) as a short vector (−e

t). A
possible construction is Kannan’s Embedding [Kan87]:

B =

(︄
A z

0 t

)︄
∈ Z(r+1)×(nlwe+1) ,

.

lattice-based cryptography 61

[SE94] Schnorr and Euchner, “Lattice Basis
Reduction: Improved Practical Algorithms
and Solving Subset Sum Problems”

[CN11] Chen and Nguyen, “BKZ 2.0: Better
Lattice Security Estimates”

[Aon+16] Aono et al., “Improved Progres-
sive BKZ Algorithms and Their Precise Cost
Estimation by Sharp Simulator”

[MW16] Micciancio and Walter, “Practical,
Predictable Lattice Basis Reduction”

[Alb+19a] Albrecht et al., “The General
Sieve Kernel and New Records in Lattice Re-
duction”

[GN08a] Gama and Nguyen, “Finding short
lattice vectors within Mordell’s inequality”

[LN20] Li and Nguyen, A Complete Analysis
of the BKZ Lattice Reduction Algorithm

[Alb+21] Albrecht et al., “Lattice Reduc-
tion with Approximate Enumeration Oracles
- Practical Algorithms and Concrete Perfor-
mance”

[Sch+22] Schwabe et al., CRYSTALS-KYBER

[Lyu+22] Lyubashevsky et al., CRYSTALS-
DILITHIUM

[Pre+22] Prest et al., FALCON

[Boe+18] Boer et al., “Attacks on the AJPS
Mersenne-Based Cryptosystem”

[TS19] Tiepelt and Szepieniec, “Quantum
LLL with an Application to Mersenne Num-
ber Cryptosystems”

3. BDD in turn can be solved via reduction to the shortest vector problem.
The embedding lattice is reduces using a lattice reduction algorithm,
which in turn calls an SVP-solver as a subroutine on a sub-lattice, which
are briefly reviewed in the following Section 4.3.3.

4.3.2 Security

The state-of-the-art attacks on these lattice problems usually involve the use
of lattice reduction techniques, with block reduction algorithms being the
most popular choice [SE94; CN11; Aon+16; MW16; Alb+19a; GN08a]. The
leading cost of block lattice reduction (and therefore, often, of the attacks
overall) comes from solving instances of the (approximate [LN20; Alb+21])
shortest vector problem (SVP) in high dimension.

The leading choice for (approximate) SVP solvers are lattice point enumer-
ation [Kan83; FP85; GNR10; CN11; ANS18; Alb+20a] and sieving [AKS01;
NV08; Laa15; Bec+16; Alb+19a] algorithms. Due to the central role these
algorithms play in the cryptanalysis of lattice-based constructions [LP11;
Alk+16; Alb+18] and because multiple post-quantum soon-to-be standards
are lattice-based [Sch+22; Lyu+22; Pre+22], clearly understanding their
cost is crucial. Enumeration and sieving are originally classical algorithms,
with asymptotically different classical runtime (namely, 2O(n logn) for enu-
meration and 2O(n) for sieving) and memory cost (namely, O(poly(n)) for
enumeration and 2O(n) for sieving).

4.3.3 Lattice Reduction

LLL. The algorithm of Lenstra-Lenstra-Lovász reduces an input basis B =

{b1, ..., br}, bi ∈ Rn by alternating the Gram-Schmidt orthogonalization,
reducing the vectors in sub-lattice and swapping vectors. It outputs a basis
with ||b∗i ||

||bi−1|| ≥ δ − µ
2
i,i−1, where µi,i−2 =

bib
∗
j

b∗j b
∗
j
is the Gram-Schmidt coeffi-

cient. For δ ∈ (14 , 1), it runs in time polynomial time in the lattice dimension
and rank, specifically in time O(r5 · n log3 maxi(||bi||2)). There haven been
improvements over the run time, which are not relevant for this manuscript.

Informally this means that the LLL algorithm can find the shortest vector
in a lattice (the first minimum) in polynomial time, if and only if, the gap to
the next largest vector is sufficiently large [Boe+18]. For instance, this is
used in the Slice-and-Dice attack (cf. Section 4.1.3). Otherwise, the runtime
is exponential in the dimension, rank and approximation gap.

Remark 3. The LLL algorithm was analyzed in the quantum regime by [TS19],
showing how the algorithm can be implemented in a quantum circuit. The
authors suggest that quantum implementations may suffer from a significant
blow-up in required quantum memory [TS19, Eq. 8] that can be more than
quadratic in the dimension n.

BKZ. The Blockwise Korkine-Zolotarev Algorithm [SE94] reduces a given
lattice basis block-wise by alternating calls to the LLL algorithm and an
SVP oracle. The algorithm outputs a basis that is Hermite-Korkine-Zolotare
reduced basis for each block of size β, and that admits, w.l.o.g., b1 as a
shortest vector. BKZ 2.0 [CN11] includes improvements of the underlying
SVP-oracle such as pruning techniques and pre-processing of basis, as well

lattice-based cryptography 62

(⋆, ⋆, ⋆)

j = 1 : π3 : L→ (b1, b2)
⊥ (c1b1, ⋆, ⋆)

(︁
c′1b1, ⋆, ⋆

)︁. . .

j = 2 : π2 : L→ (b∗1)
⊥ (c1b1, c2b2, ⋆)

(︁
c1b1, c

′
2b2, ⋆

)︁. . .

j = 3 : π1 : L→ L (c1b1, c2b2, c3b3)
(︁
c1b1, c2b2, c

′
3b3

)︁. . .

Figure 4.10: Simplified example of an lattice enumeration backtracking tree for a
lattice with rank r = 3. Let the lattice vectors be of the form v =

∑︁r
i=1 cibi. Then

every node in the tree on level j is in the projective sublattice πj(L). Each such node
corresponds to a assignment of values to ci ∈ Z for 1 ≤ i ≤ j.

[Poh81] Pohst, “On the Computation of Lat-
tice Vectors of Minimal Length, Successive
Minima and Reduced Bases with Applica-
tions”

[Kan83] Kannan, “Improved Algorithms for
Integer Programming and Related Lattice
Problems”

[FP85] Fincke and Pohst, “Improved meth-
ods for calculating vectors of short length in
a lattice, including a complexity analysis”

[SE94] Schnorr and Euchner, “Lattice Basis
Reduction: Improved Practical Algorithms
and Solving Subset Sum Problems”

[GNR10] Gama, Nguyen, and Regev, “Lattice
Enumeration Using Extreme Pruning”

[MW15] Micciancio and Walter, “Fast Lattice
Point Enumeration with Minimal Overhead”

[Alb+20a] Albrecht et al., “Faster
Enumeration-Based Lattice Reduction: Root
Hermite Factor k1/(2k) Time kk/8+o(k)”

as a heuristic for an early abort for BKZ. The runtime of the algorithm is
dominated by the cost of the SVP oracle, an algorithm that finds a sufficiently
short vector in a lattice. Such an oracle is usually instantiated with either
lattice sieving or lattice enumeration, the latter of which we cover in the
next Section 4.3.4.

4.3.4 Lattice Enumeration

Lattice enumeration is the procedure of systematically iterating all points
in a lattice; if one considers short lattice enumeration, then the space is
bounded, i. e., one is searching for all lattice vectors with length at most R.
Lattice enumeration works by performing a depth-first-search over projec-
tions (cf. Definition 4.3.4) of lattice vectors. The depth-first-search implicitly
constructs an enumeration tree as in Figure 4.10 analog to a backtracking
tree (cf. Definition 3.1.1), where the variables correspond to coefficients
in the projected lattice. As originally proposed, enumeration algorithms
iterated over a tree spanning the complete intersection of the lattice with
a ball of radius R around the origin [Poh81; Kan83; FP85; SE94]. Mod-
ern variants restrict the search space by introducing a branch-and-bound
methodology, pruning the tree based on a heuristic bound on the norm
||πi(v)|| of the target’s orthogonal projections [GNR10; MW15; Alb+20a].
This slightly reduces the success probability p of the algorithm, since the
short vector may be erroneously pruned from the tree, introducing a trade-off
between faster traversal speed on the smaller tree versus having to re-run
the procedure O(p−1) times on re-randomised versions of the lattice basis.
In this manuscript, we focus on the extreme cylinder pruning variant origi-
nating from [SE94, Alg. ENUM] used in [GNR10], with pruning bounds Rk

for each level k of the search tree.

Procedure. Given an input basis B of L and an upper bound λ1(L) ≤ R
(e. g.,R = ||b∗1||), lattice enumeration finds a vector v ∈ L such that ||v|| ≤ R.
The central projection map is given in Definition 4.3.4. The projection πi(L)
is a r − i + 1 dimensional lattice. Given a lattice L of rank r, the set
πi(L) = {πi(v) | v ∈ L} is itself a lattice in Rr−i+1. We sometimes refer to
such lattices as projective sublattices.

Definition 4.3.4 (Projection πi). Let B be a basis for L. The projection

πi : L→ span(b1, ..., bi−1)
⊥ ,

maps lattice points onto the space orthogonal to the span of vectors b1, ..., bi−1.

lattice-based cryptography 63

6Since lattices are symmetrical around the
origin, in practice implementations consider
only half of the possible guesses for πi(v).

7To unburden notation, we temporarily
consider the non-pruned case with Rk =
R, ∀k.

8In the case of BKZ reduction with extreme
cylinder pruning, these are re-randomized
instances of a local BKZ block.

The procedure performs a depth-first-search on a tree consisting of an
“empty node” root on level k = 0, and of a set of projected lattice points of
norm at most R in πr−k+1(L) on level k > 0. The leaves of the tree on level
k = r are lattice points of norm at most R.

The key observation behind lattice enumeration algorithms is that or-
thogonal projections cannot increase the norm of a vector. This means, for
a lattice L with basis B = (b1, . . . , br), shortest vector v, and sufficiently
large Rthat R ≥ ||v|| = ||π1(v)|| ≥ ||π2(v)|| ≥ · · · ≥ ||πr(v)|| ≥ 0, with
πi(v) living in an (r−i+1)-dimensional subspace of Rr. Thus, to enumerate
vectors in L of norm at most R, it is sufficient to enumerate vectors in the
lower-rank projections πi(L) for i ≤ r, discarding guesses for πi(v) if they
are too long.

Starting from i = r, suppose πr(v) = gr is guessed correctly for some
vector gr ∈ πn(L).6 The enumeration algorithm then attempts to extend
this into a guess gr−1 ∈ πn−1(L) for πr−1(v) such that πr(gr−1) = gr. If
||gr−1|| ≤ R,7 one proceeds similarly trying to extend gr−1 into a guess
for gr−2 for πr−2(v) and so on; else one attempts to find a different guess
g′r−1 ̸= gr−1 for πr−1(v) that is short enough, and if no such vector exists
one aborts the search in πr−1(L) and attempts to extend a different guess
g′r ̸= gr for πr(v). Every guess gi for πi(v) of norm at most R becomes a
node in the enumeration tree. A node gi is the child of some guess gi+1 for
πi+1(v) such that πi+1(gi) = gi+1. Moreover, every node gi is the parent of
guesses {gi−1 ∈ πi−1(L) | πi(gi−1) = gi} for πi−1(v).

Careful computation using the Gram-Schmidt vectors B∗ = (b∗1, . . . , b
∗
r)

and coefficients µi,j = bi · b∗j/||b∗j ||2 for i > j, shows that given a lattice
vector v =

∑︁r
i=1 cibi where ci ∈ Z for all i, its projections are of the form

πj(v) =
∑︁r

i=j αib
∗
i where αj = cj +

∑︁
i>j µi,j ci. By orthogonality of the

(b∗i)i, we have ||πj(v)||2 = |αj |2||b∗j ||2 + ||πj+1(v)||2. Hence, for any guess
gj+1 for πj+1(v), a guess gj for πj(v) with πj+1(gj) = gj+1 must satisfy
|αj |2 ≤ (R2 − ||πj+1(v)||2)/||b∗j ||2, i.e.,

⃓⃓⃓
cj+

∑︂
i>j

µi,j ci

⃓⃓⃓
≤

√︂
R2−||πj+1(v)||2⃓⃓

|b∗j
⃓⃓
|

=

⌜⃓⃓⎷R2−
r∑︂

r=j+1

(︄
cr+

r∑︂
i=r+1

µi,rci

)︄2

||b∗r ||2⃓⃓
|b∗j
⃓⃓
|

.

(4.4)

Remark 4. In the case of pruned enumeration, the main difference in the process
is that we are given a pruning set {Ri | i ∈ [n], 0 < R1 ≤ · · · ≤ Rn = R}
rather than a single bound R, with Rn−j+1 replacing R in Equation (4.4).

Expected cost of enumeration. The cost of enumeration is typically
estimated to be equal to the number of nodes visited by the algorithm—the
“enumeration tree” T of size #T. Let Zk be the set of nodes on the kth

level of the tree (that is, at distance k from the empty root node), Hk be
the expected cardinality of Zk over the distribution of random bases being
enumerated,8 andN be the total number of nodes in the tree. The cardinality
of Zk depends on the pruning strategy and on the geometry of the projective

lattice-based cryptography 64

[Bin+23] Bindel et al., Quantum Lattice Enu-
meration in Limited Depth

[GNR10] Gama, Nguyen, and Regev, “Lattice
Enumeration Using Extreme Pruning”

[Aon+18] Aono et al., “Lower Bounds on
Lattice Enumeration with Extreme Pruning”

[ANS18] Aono, Nguyen, and Shen, “Quan-
tum Lattice Enumeration and Tweaking Dis-
crete Pruning”

[Pre18] Preskill, “Quantum Computing in
the NISQ era and beyond”

[Alb+20b] Albrecht et al., “Estimating Quan-
tum Speedups for Lattice Sieves”

sublattices implied by the lattice bases. The expected number of total nodes
is E[#T] = 1

2

∑︁n
k=1 E[|Zk|] = 1

2

∑︁n
k=1 Hk, where the expectation is taken

over the distribution from which the lattice is being sampled and the extreme
cylinder pruning re-randomization (if any is used), and the 1/2 factor is due
to exploiting lattices’ additive symmetry to avoid unnecessarily visiting half
of the tree. Cost estimation for the algorithm then reduces to estimating Hk.
This is a standard computation that we perform in detail in [Bin+23, App.
A] closely following [GNR10; Aon+18]. However, the exact procedure is not
relevant to understand the content of this manuscript.

Quantum Speedups. Aono, Nguyen and Shen [ANS18] analyze the asymp-
totic cost of using quantum backtracking algorithms to perform lattice enu-
meration in a black-box setting. In [ANS18, Thm. 7(1)], they identify
the asymptotic runtime for finding a short non-zero vector using cylin-
der pruning and poly(n) qubits to be O

(︁√
#T n3 poly(log(1/δ), log n)

)︁
.

In [ANS18, Sec 4.2], they argue that this holds also when performing ex-
treme pruning with M randomized lattice bases (Bi)i≤M , by collecting
each enumeration tree into a larger, single tree, resulting in an asymp-
totic runtime for finding a non-zero vector via quantum extreme pruning
ofO

(︁√
#T Mn3m poly(log n, log(1/δ), log(m), logM)

)︁
, wherem is the bit-

size of the entries of Bi, for i ∈ [M] and #T M is the sum of the number of
nodes of allM trees.

While applicability of these speedups appears clear in the unbounded-
depth logical-qubit model, where quantum computation achieves low error
rates for free and does not decohere, our current understanding of quantum
computer engineering suggests that this model may be overly optimistic for
hypothetical real-world quantum adversaries [Pre18]. For example, Albrecht,
Gheorghiu, Postletwaite and Schanck [Alb+20b] investigate the impact of
error correction on quantum lattice sieving, determining that achieving even
small speedups over classical sieving in the cryptanalytic regime requires
making several optimistic algorithmic and physical assumptions.

Parts of this chapter are taken verbatim from
our publications [TD20b; TD20a].

[Sze17] Szepieniec, Ramstake

[Agg+17b] Aggarwal et al., Mersenne-
756839

[Nat20] National Institute for Standards
and Technology, Post-Quantum Cryptogra-
phy Round 1

[Nae+17] Naehrig et al., FrodoKEM

[Bos+17] Bos et al., CRYSTALS – Kyber: a
CCA-secure module-lattice-based KEM

[DVV18] D’Anvers, Vercauteren, and Ver-
bauwhede, On the impact of decryption
failures on the security of LWE/LWR based
schemes

[Mel+18] Melchor et al., Hamming Quasi-
Cyclic (HQC)

[Bal+18] Baldi et al., LEDAcrypt: Low-
dEnsity parity-chck coDe-bAsed cryptographic
systems

[Mel+19] Melchor et al., ROLLO-Rank-
Ouroboros, LAKE & LOCKER

[JJ00] Jaulmes and Joux, “A Chosen-
Ciphertext Attack against NTRU”

[How+03] Howgrave-Graham et al., “The
Impact of Decryption Failures on the Secu-
rity of NTRU Encryption”

[DAn+19a] D’Anvers et al., “Decryption
Failure Attacks on IND-CCA Secure Lattice-
Based Schemes”

[GJS16] Guo, Johansson, and Stankovski,
A Key Recovery Attack on MDPC with CCA
Security Using Decoding Errors

5
Exploiting Decryption Failures

In this chapter we explore how decryption failures can be exploited to break
the IND-CCA security of Mersenne-number cryptosystems, two of which,
Ramstake [Sze17] and Mersenne-756839 [Agg+17b], were submitted to
the first round of the NIST post-quantum competition.

Decryption Failures. A decryption failure occurs when an attempt to
decrypt encrypted data is unsuccessful. As these decryption failures also
depend on the secret key, they contain information on the secret key. It
is important to note that decryption failures are not always induced by
malicious activity; they can also occur due to technical issues, such as the
incorporation of error correcting codes in the encryption and decryption
process.

Various proposals in the NIST post-quantum competition [Nat20] are
prone to a low, but non-zero probability that ciphertexts fail to decrypt cor-
rectly, for which the two communicating parties fail to agree on a common
message after the execution of the protocol. These failures occur in the
Mersenne number schemes such as Ramstake [Sze17] (with failure probabil-
ity 2−64) or Mersenne-756839 (with failure probability 2−239) [Agg+17b].
Likewise many other NIST proposals admit such failures, as in the family
of lattice based (e.g. FrodoKEM [Nae+17] with 2−252, Kyber [Bos+17]
with 2−160, Saber [DVV18] with 2−136) or code based schemes (e.g. HQC
[Mel+18] with 2−128, LEDAcrypt [Bal+18] with 2−64, or Rollo [Mel+19]
with 2−42).

For lattice based schemes, Jaulmes and Joux [JJ00] introduced a chosen
ciphertext attack leveraging decryption failures, which was later refined and
extended by Gamma, Nguyen and Howgrave-Graham [How+03]. These
attacks are countered by schemes that obtain IND-CCA security using an
appropriate transformation. At the same time, D’Anvers et al. [DAn+19a]
provided a technique to increase the failure probability and subsequently
recover the secret key of IND-CCA secure LWE based schemes, a technique
which was extended in subsequent works [DVV19; GJY19; DRV20]. Guo,
Johansson and Stankovski [GJS16] provided a similar attack on IND-CCA
secure code based schemes.

Objective & Contribution. Naturally, one may ask how or if Mersenne
number cryptosystems are affected by these techniques. We aim to under-
stand, what impact decryption failures have on the security of Mersenne-

65

exploiting decryption failures 66

[Agg+17b] Aggarwal et al., Mersenne-
756839

[Sze17] Szepieniec, Ramstake

[Nat20] National Institute for Standards
and Technology, Post-Quantum Cryptogra-
phy Round 1

[Beu+19] Beunardeau et al., “On the Hard-
ness of the Mersenne Low Hamming Ratio
Assumption”

based key encapsulation mechanisms. That means to understand how much
information can be extracted from one or multiple decryption failures, what
the nature of that information is, and how this impacts the secrecy of the
secret key, or otherwise affects the security notions.

We present a novel method on exploiting decryption failures of Mersenne
number cryptosystems [Agg+17b; Sze17], both of which were candidates in
the first round of the NIST post-quantum competition [Nat20]. Particularly,
we present an attack exploiting this information to break the IND-CCA
security of Mersenne number cryptosystems.

Our attack provides a good estimate of the secret keys when given enough
failing ciphertexts, which allows to circumvent the bottleneck of the cost
of the Slice-n-Dice attack (cf. Section 4.1.3) introduced by Beunardeau et
al. [Beu+19] to extract these secrets. This effectively allows to break the
IND-CCA security of the cryptosystems in question as well as extract the
secret key, Specifically, we show that Proposition 1 holds true.

Proposition 1 (Partition from Decryption Failures; Informal). Decryption
failures in the Mersenne number cryptosystems [Agg+17b; Sze17] allow to
estimate the positions of ones in the secret vectors sufficiently well to provide a
partitioning for the Slice-and-Dice attack.

We provide empirical results for attacking the Ramstake cryptosystem,
which can be reproduced and verified using our implementation. The em-
pirical results obtained good estimates of the secret using 212 decryption
failures. These can be extracted from the original Ramstake scheme in about
274 decapsulations queries. The original attack of the Slice-and-Dice attack
requires 2256 classical guesses, or 2128 quantum invocations of a guessing
function to extract the secret keys. We will show that our cryptanalytic
approach is able to identify the positions of the secrets sufficiently good
to reduce the cost of the Slice-and-Dice attack to require 246 iterations of
Grover’s algorithm, each of which corresponds to one quantum invocation of
the guessing function, to extract the secret key.

Outline. In Section 5.1 we review the Mersenne prime schemes Ramstake
[Sze17] and Mersenne-756839 [Agg+17b] along with their potency to
generate decryption failures. In Section 5.2 we define heuristics that allow
us to quantify the probability distribution of the secrets. Based on these
heuristics we present our method on estimating the secret vectors. We
introduce an estimator for the bits of the secret key using decryption failures,
such that on input of a set of decryption failures we get an estimate on the
probability distribution of the positions of the ones in the secret keys. In
Section 5.3, we show that our estimates allow to derive additional knowledge
about the secret key and how that information can be used to speed up the
attack by Beunardeau et al. significantly, providing a new upper bound on
the complexity to break IND-CCA security of Mersenne schemes given a set
of decryption failures. Finally, we report on our implementation and the
results of the attack on the Ramstake cryptosystem.

https://github.com/mtiepelt/ramstake-failure-attack

decryption failures in mersenne-based submissions to nist 67

[Agg+17b] Aggarwal et al., Mersenne-
756839

[Sze17] Szepieniec, Ramstake

1The exact working of Reed-Solomon codes
is not relevant for us.

5.1 decryption failures in mersenne-based submissions to nist

Both Mersenne-756839 and Ramstake have a small probability of decryption
failures, in which the keys are not transmitted correctly. In the generic
Mersenne scheme, Figure 4.2 of Section 4.1 errors are introduced into the
ciphertext by the xor operations with consecutively S[0 : |recc|] and S′[0 :

|recc|]. A decryption failure occurs, if these errors cannot be corrected by
the error correcting code.

To ease the work on decryption failures and bitstrings in the ring modulo
a Mersenne number p, we use following notation throughout this section:
Counting the Hamming weight of the substring x[i : j] will be abbreviated
as hw[i:j](x) and likewise hw8

[i:j](x) for bytewise Hamming weights. Given
two integers x, y ∈ Zp the xor operation ⊕ will be defined so that z = x⊕ y
if z[i] = (x[i] + y[i]) mod 2 for all i ∈ [0, n).

5.1.1 Mersenne-756839

The Mersenne-756839 KEM [Agg+17b] implements a repetition code to
instantiate the algorithms Encode and Decode in the encryption and de-
cryption algorithms (cf. Figure 4.2), where each bit of the message M is
repeated χ = 2048 times. During the encryption an additional error term d̂

is added to the (shared) noisy secret resulting in an overall error of

(acG+ ad)⊕ (acG+ bc+ d̂) .

A decryption failure occurs if more than χ/2 bits of any single encoded
bit are erroneous.

5.1.2 Ramstake

The Ramstake KEM [Sze17] employs an error correcting code based on
repetitive Reed-Solomon encodings as described in Figure 5.1. The Reed-
Solomon1 code maps a 256-bit message onto a 2040-bit (255 byte) codeword,
which can correct up to t byte errors. We will denote the bit length of
the codeword with lc. This codeword is repeated ν times. Furthermore,
a hash h of the message is included in the ciphertext. During decoding,
the Reed-Solomon codes are decrypted iteratively and then checked for
correctness by comparing the hashed value H(r) with h. More information
on the design of Ramstake can be found in [Sze17], the parameters of the
Ramstake instantiations can be found in Table 5.1. In this paper we will
focus on the high security variant Ramstake-756839.

A failure occurs when none of the ν codewords could be decoded.
The kth codeword cannot be decoded if the bytewise Hamming weight
hw8

[klc:(k+1)lc]
(e) > t is larger than the threshold t, where

e = S ⊕ S′ = ((acG+ ad)⊕ (acG+ bc)) ,

is the bitwise XOR of the shared noisy one-time-pads.

failure attack 68

Table 5.1: Parameter sets for the two security levels of Ramstake. The highlighted
row is the primary target of this chapter.

p ω ν t P[F] security

Ramstake-216091 216091 64 4 111 ≤ 2−64 128

Ramstake-756839 756839 128 6 111 ≤ 2−64 256

Ramstake.Encode(m)

1 : e = encRS(m)
2 : mecc = 0
3 : for i = 0 to ν − 1

4 : mecc += e · 2i l
ν

5 : h = H(m)
6 : return mecc, h

Ramstake.Decode(mecc, h)

1 : for i = 0 to ν − 1

2 : m = decRS

(︁
mecc[i

l
ν
: (i+ 1) l

ν
− 1]

)︁
3 : if h == H(m)
4 : Return m
5 : return ⊥

Figure 5.1: Error correcting encoding and decoding for Ramstake where encRS and
decRS correspond to encoding and decoding of Reed-Solomon codes respectively.

[Sze17] Szepieniec, Ramstake

5.2 failure attack

In this following section, we will focus our attention to Ramstake. The
Ramstake KEM [Sze17] has a failure probability of 2−64. That means, that
after an expected number of 264 valid queries a decryption failure will occur.
We assume that the adversary has obtained N decryption failures, allowing
them to estimate the probability of the bits in the secrets being zero or one.
The probability is defined formally in Corollary 1. Later, in Section 5.3, we
analyze the cost the adversary has to obtain the N decryption failures.

In order to mount the failure attack, we first identify properties of error
bits in Section 5.2.1 and then define a maximum likelihood estimation
of the secret. This step takes as input a list of decryption failures, and
outputs an estimation of the probability that each of the bits in the interval
[1, p] is zero or one. Each of the N decryption failures has corresponding
integers (c(j), d(j)), 1 ≤ j ≤ N which were chosen by the adversary, and are
corresponding to an unknown (to the adversary) but fixed secret key (a, b).

A failure indicates that all ν codewords in a ciphertext are decoded
incorrectly. We will denote the number of errors in the kth codeword of the
jth ciphertext with Fj,k, where

Fj,k = hw8
[klc:(k+1)lc]

(︂
(ac(j)G+ ad(j))⊕ (ac(j)G+ bc(j))

)︂
,

so that a codeword is incorrectly decoded if Fj,k > t.
In the following derivation, we will first show that

hw8
[klc:(k+1)lc]

(2ibic
(j)) , is a reasonable indicator for the value of Fj,k

when one only has knowledge of c(j), d(j) and bi. Then, we will use this to
construct a maximum likelihood estimator to estimate the probability of the
bits of a and b.

5.2.1 Maximum likelihood estimation

Properties of the Error Bits. We will assume that bi = x and that we
know c(j), d(j). We will split the value of Fj,k into a term that depends on bi
and a term with no dependency on bi.

failure attack 69

Table 5.2: Probabilities of values of hw8
[klc:(k+1)lc]

(2ibic), the number of non-zero
bytes, computed using Equation (5.1) and the parameters for Ramstake-756839 from
Table 5.1.

hw8 0 1 2 3 4 5

P 70.82% 24.45% 8.41% 2.88% 0.98% 0.34 %

2The estimation can be verified via the
script “prob_non_zero_bytes.py”.

Heuristic 5.2.1. The number of errors Fj,k for a uniform randomG← U(Zp)

and low Hamming weight (a, b, c, d)← HWω(Zp) is approximately the same
as the sum of errors for (0, 2ibi, c, d) and (a, b− 2ibi, c, d), or:

Fj,k = hw8
[klc:(k+1)lc]

((acG+ ad)⊕ (acG+ bc))

≈

(︄
hw8

[klc:(k+1)lc]
(2ibic)

+ hw8
[klc:(k+1)lc]

(︁
(acG+ ad)⊕ (acG+ (b− 2ibi)c)

)︁)︄

We justify the heuristic as follows: one can easily see that for bi =

0, this heuristic is exact. For bi = 1, the heuristic is exact if none
of the nonzero bytes in (2ibic) coincides with the nonzero bytes of(︁
(acG+ ad)⊕ (acG+ (b− 2ibi)c)

)︁
in the range [klc : (k + 1)lc]. In the

following reasoning, we will estimate the distribution of hw8 for both terms,
from which we will argue that overlaps are rare:

(1) The number of nonzero bits of (2ibic) is 128 out of 756,839 bits, which
results in the probability of a non-zero byte as

P[bit zero] = 1− P[bit non-zero] = 1− ω

p

P[byte non-zero] = 1− P[bit zero]8 = 1−
(︃
1− ω

p

)︃8

.

Accordingly, the probability that i out of 255 bytes are non-zero is

P[hw8
[klc:(k+1)lc]

(2ibic) = i]

=

255∏︂
i=0

(255− i) · P[byte non-zero] · (1− P[byte non-zero])255−i ,

(5.1)
which results in an average byte Hamming weight of under 0.373

bytes per codeword. The concrete probability for the distribution of
Hamming weights is presented in Table 5.2.

(2) We estimated2 the average byte Hamming weight of(︁
(acG+ ad)⊕ (acG+ (b− 2ibi)c)

)︁
empirically by generating 1024

samples and obtained an average Hamming weight of 80.68, meaning
that on average 80.68 out of 255 bytes, or approximately 31.64%, are
erroneous.

The probability of one collision, and thus an error of one in our heuristic,
can then be approximated as the probability of having a certain number of

https://github.com/mtiepelt/ramstake-failure-attack

failure attack 70

3Bayes’ theorem:
P[A|B] = P[B|A] · P[A]/P[B]

bits in the first term, times the probability of a collision due to the second
term, which can be made explicit as:

0.31 ·
255∑︂
i=1

P
[︂
hw8

[klc:(k+1)lc]
(2ibic) = i

]︂
≈ 11.779

This gives an error in about 11.8% of the cases. However, the heuristic will
only be off with a small number.

Heuristic 5.2.2. For estimating Fj,k calculated using a uniform random
G ← U(Zp) and low Hamming weight (a, b, c, d) ← HWω(Zp) , knowl-
edge of the tuple (0, 2ibi, c, d) is as good as knowledge of the Hamming weight
hw8

[klc:(k+1)lc]
(2ibic) , or:

P
[︂
Fj,k | bi = x, {c(j), d(j)}j=1..N

]︂
≈P
[︂
Fj,k | hw8

[klc:(k+1)lc]
(2ixc)

]︂
Following Heuristic 5.2.1, Fj,k can be split in two parts:

hw8
[klc:(k+1)lc]

(2ibic)

and hw8
[klc:(k+1)lc]

((acG+ ad)⊕ (acG+ (b− 2ibi)c)) .

Information about the tuple (0, 2ibi, c, d) can be used to fully determine
the first part, while the latter part has an unknown term a or b − 2ibi in
each of its terms. We argue that for this reason the tuple (0, 2ibi, c, d) does
contain negligible information about the second term. From this assumption
follows that knowledge of the tuple (0, 2ibi, c, d) gives the same information
as knowledge about the Hamming weight hw8

[klc:(k+1)lc]
(2ibic).

While these heuristics are clearly not exact, we will see that they are suffi-
ciently close for our purposes.

Estimator. We will derive an estimator for the probability that the ith bit
of b equals x, which can be expressed as follows:

P
[︂
bi = x | {c(j), d(j)}j=1..N , {Fj,k > t}j=1..N,k=1..ν

]︂
.

To obtain this estimator, we will first split the influence of the various er-
ror terms Fj,k using Bayes’ theorem3. Then we will derive an expression
which can be used to estimate bi using the value y = hw8

[klc:(k+1)lc]
(2ixc(j))

for each decoding failure. Finally we use experimental measurements to
calculate the required probability distributions.

The first step proceeds as follows:

P
[︂
bi = x | {c(j), d(j)}j=1..N , {Fj,k > t}j=1..N,k=1..ν

]︂
=P [bi = x] ·

P
[︁
{Fj,k > t}j=1..N,k=1..ν | bi = x, {c(j), d(j)}j=1..N

]︁
P
[︁
{Fj,k > t}j=1..N,k=1..ν | {c(j), d(j)}j=1..N

]︁
=P [bi = x]

N∏︂
j=1

ν∏︂
k=1

P
[︁
Fj,k > t | bi = x, c(j), d(j)

]︁
P [Fj,k > t]

.

In the last equation, we assume that individual failures are independent, and
that knowledge of c(j) and d(j) without any knowledge of a or b does not
help in determining the failure probability of a codeword.

attack on ramstake 71

In the second step we use Heuristic 5.2.2, which gives:

P [bi = x]

N∏︂
j=1

ν∏︂
k=1

P
[︂
Fj,k > t | hw8

[klc:(k+1)lc]
(2ixc(j)) = y

]︂
P [Fj,k > t]

Looking at the last term, we can use Bayes’ again to get the following:

P [bi = x]

N∏︂
j=1

ν∏︂
k=1

P
[︂
hw8

[klc:(k+1)lc]
(2ixc(j)) = y | Fj,k > t

]︂
P [hw8

[klc:(k+1)lc]
(2ixc(j)) = y]

(5.2)

Both probabilities in the fraction can be estimated for each possible y by gen-
erating enough sample ciphertext with the right property and reconstructing
the probability distribution experimentally.

A similar derivation can be made for estimating the bits of ai, by replacing
the b and c(j) terms with a and d(j) terms respectively and assuming that
knowledge of ai does not give any practical knowledge of acG. The result is
summarized in Corollary 1.

Corollary 1. Given N failing ciphertexts of Ramstake corresponding to a fixed
secret key (a, b) and known values for (c, d), the probability of the bits at
position i of a and b can be approximated as:

P
[︂
bi = x | {c(j), d(j)}j=1..N , {Fj,k > t}j=1..N,k=1..ν

]︂
=P [bi = x]

N∏︂
j=1

ν∏︂
k=1

P
[︂
hw8

[klc:(k+1)lc]
(2ixc(j)) = y | Fj,k > t

]︂
P [hw8

[klc:(k+1)lc]
(2ixc(j)) = y]

P
[︂
ai = x | {c(j), d(j)}j=1..N , {Fj,k > t}j=1..N,k=1..ν

]︂
=P [ai = x]

N∏︂
j=1

ν∏︂
k=1

P
[︂
hw8

[klc:(k+1)lc]
(2ixd(j)) = y | Fj,k > t

]︂
P [hw8

[klc:(k+1)lc]
(2ixd(j)) = y]

5.3 attack on ramstake

With the estimator at hand we can extract the approximate position of the
ones in the secret vectors from the probability distribution using statistical
methods, and subsequently apply a variant of the Slide-and-Dice attack
(called “reduced Slice-and-Dice attack”) to find the exact secret vectors. We
demonstrate the feasibility of such an extraction by applying a heuristic
procedure to a probability distribution resulting from decryption failures in
the Ramstake-756839 KEM given in Section 5.1.2.

Assume that we are given N decryption failures and the estimator in-
troduced in the previous section computes the probability that a certain bit
position in a, b is zero or one. The computation is following Equation (5.2)
in Corollary 1 for different pairs of values a, d(j) and b, c(j). The result are
the probabilities Pr[bi = 1] and Pr[bi = 0] for each bit position i.

Given these estimates, we can examine the function that maps a bit
position bi to the fraction

ϱi = P[bi = 1]/P[bi = 0] . (5.3)

An example of such a function is shown as a blue line in Figure 5.2, where
we denote the (secret) positions of the ones the dashed black lines.

attack on ramstake 72

Figure 5.2: Function mapping bit positions to the ratio (P[bi = 1]/P[bi = 0]). The
blue graph is the output of applying Corollary 1 to N = 212 decryption failures,
where the (secret) bit positions of a are marked as dashed, vertical lines.

4We specify the cost of the attack in Sec-
tion 5.3.3.

From Figure 5.2 one can see that the positions of the ones correlate to
local maxima in the function. However, not all local maxima correspond
to a one, and there appears to be no clear indication of the distance from
a one to a local maxima, and neither to the height of the local maxima.
Since Corollary 1 only provides us with a probability distribution, we cannot
identify bit positions with certainty without further processing.

To apply the Slice-and-Dice attack Section 4.1.3, we need to distinguish
intervals that contain a one and intervals that contain only zeroes. We
developed a heuristic procedure, summarized in Figure 5.3, that extracts
such intervals for Ramstake.
We provide experiments along the way to show how our heuristic procedure
recovers intervals that admit correct parts. At the same time, we will see that
some intervals require some random sampling of starting positions to admit
a correct partition. In Section 5.3.4 we will conclude, that the experimental
estimates are sufficiently good to significantly reduce the number of guesses
to construct a partition required to extract the secrets.

5.3.1 Interval Detection

In this section we provide details on our methodology for extracting a set
of intervals from the probability distribution to sample a good partition for
the Slice-and-Dice attack. We do not claim that this procedure is optimal,
nor are applicable to any Mersenne-based scheme. Our experimental results
verify that this procedure provides sufficient information to recover the secret
vectors in the Ramstake scheme with reasonable4 effort.

Throughout this section we will consider distinct intervals ILABELi,l = [i, i+

l], i, l ∈ Z with least significant bit i and length l that are either likely to
contain a one according to the probability distribution given by ϱi, labeled

attack on ramstake 73

[ϱ1, ϱ2, ϱ3, ..., ϱn]

[..., Ipeaki,li
, Ino-peaki+1,li+1

, Ipeaki+2,li+2
, ...]

Extract intervals

[..., Icorrecti,li
, Iempty

i+1,li+1
, Isample

i+2,li+2
, , Izeroi+3,li+3

, ...]

Extract partition

Interval detection, Section 5.3.1

Decryption Failures

Maximum likelihood estimator
(cf. Section 5.2.1)

Reduced Slice-and-Dice attack
(cf. Section 5.3.2)

Figure 5.3: Overview of the extraction (dashed box) of a partition from the initial
probability distribution. Each value ϱi correspond to the probability that a bit in
a secret vector is either zero, or one as in Equation (5.3). The first step detects
intervals ILABEL

i,li
, LABEL ∈ {peak, no-peak} where this probability peak (and vice

versa). The second step defines a partitioning, where each part ILABEL
i,li

, LABEL ∈
{correct, empty, sample, zero} corresponds to a part as used in a reduced variant of
Slice-and-Dice attack Figures 5.7 and 5.8.

5The value n/(10ω) has been chosen due
to the average size n/ω of a balanced parti-
tion from our experiments in Section 5.3.

peak, and intervals that are unlikely to contain a one, labeled no-peak, Later,
we apply a new set of labels corresponding to the intervals suitability to form
a part for the Slice-and-Dice attack.

Extract Intervals. We apply a heuristic procedure to extract the intervals
from the function values of ϱi = (Pr[bi = 1]/Pr[bi = 0]).

1. Threshold segmentation: Let T be the average of all probability ratios
ϱi. We identify all positions i such that the ratio is larger than the
threshold: ϱi ≥ T .

2. Bit ranges “peak”: We join all bit position above the threshold T that
are at most n/(10ω) bit5 positions apart to form a single interval Ii,l,
beginning at the least and ending at the most significant value above
the threshold. These intervals will be labeled as peak

3. Bit ranges “no-peak”: Each interval between two consecutive “peak”
intervals will form an interval Ino-peaki,l .

4. Width reduction: We reduce the width of all peak intervals (thus
increasing the size no-peak intervals) relative to the height of their
local maxima, i. e., the maxima enclosed by Ii,l. Let

Ti,l = τ ·
i+l∑︂
j=i

ϱi/l ,

be a local threshold for the interval Ii,l. The bounds i, i + l of each
bit range are shifted towards the local maxima until the respective

attack on ramstake 74

6We chose τ = 1/32 as a heuristic value
that worked well in our experimental evalu-
ation.

ϱi ≥ Ti,l. This step reduces the overall area covered by the bit ranges
and gives more accurate intervals around the local maxima. Smaller
values may give better partitioning results but increase the risk of
excluding a potential position of a one6.

Applying these steps to all estimates results in segmented intervals of the
probability distribution. An example from our experiments is shown in Figure
5.4, where the peak intervals are solid. At the end of the extraction phase we
have a list of intervals, where zero and non-zero intervals are interleaved,
for example, a sequence of the form Ipeak = [..., Ipeaki,l , I

no-peak
i′,l′ , Ipeaki′′,l′′ , ...].

Remark 5. We note that these observations are tied to our experimental
evaluation of the Ramstake cryptosystem in Section 5.3. Further, if a position
of a one in the secret is outside of the derived bit range, i. e., as a result of
an incorrect estimation, the approximation of the parts and the following
application of the reduced Slice-and-Dice attack will not be successful with
high probability. However, our empirical results in Section 5.3.4 suggest that
the heuristic values have been chosen conservatively enough to circumvent this
possibility.

Figure 5.4: Identified “peak” (shaded in gray) and “no-peak” (all other) intervals
after threshold segmentation, extracting bit ranges and width reduction.

Merge Intervals. Next, we define a new list Iparts of intervals according
to the intervals ability to form a correct part in the Slice-and-Dice attack
from Section 4.1.3. That means, we find intervals that contain a one only in
their lesser significant half. After this procedure the list of intervals contains
four possible labels:

• correct, if a position of a one is expected in the lower half, corresponding
to a correct part.

• empty, if it is expected to contain only zeroes, and a correct interval is
preceeding.

attack on ramstake 75

• sample, zero, where the first are intervals with an expected position of
a one that are followed by the latter, which is a zero-interval of shorter
length.

Specifically, correct and empty intervals are identified as follows: Let
I
peak
i,li

, Ino-peakj,lj
be intervals with i < j in the list Ipeak. If there exists a no-

peak interval that is larger than at least one previous peak interval, i. e., if
lj > j − i, we define a new interval Icorrecti,2(j−i). The remaining unassigned
range is labeled as Iempty

lj−(j−i),j+lj
. All intervals in this range are removed

from the list Ipeak. The new intervals are added to the list Iparts. An example
for this procedure is shown in Figure 5.5.

We further define sample and zero labeled intervals as follows: Let Ipeaki,li
,

I
no-peak
j,lj

be two consecutive intervals in the remaining list Ipeak. For each two
consecutive intervals, we have that lj < j − 1, i. e., the intervals containing
zeros with high probability are shorter than there respective preceedeing
intervals that contains ones with high probability. We relabel all remaining
intervals as peak ↦→ sample and no-peak ↦→ zero and add them to the list
Ipart. After this procedure we have a list Ipart. of intervals, where intervals
labeled correct, empty, sample and zero. We assume that the list is ordered
with respect to the least starting position of the intervals.

msblsb

I
no-peak
i+10,14I

peak
i+5,5I

no-peak
i+3,2I

peak
i,3

msblsb

new I
empty
i+20,4

new Icorrecti,20

Figure 5.5: Merging process for bit ranges. White boxes correspond to a no-peak
interval, filled gray boxes to a peak interval.

5.3.2 Reduced Slice-and-Dice Attack

We consider a variant of the Slice-and-Dice attack that uses the additional
knowledge from the intervals to derive partitions of size for the secrets a, b.
The set of all intervals labeled with correct already resembles correct parts,
where the parts start at the first position of the interval, and thus admit a
natural starting position for a part.

The intervals labeled with sample are followed by an interval with zero’s
that is shorter than the sample interval, i. e., if one sets the starting position
of the part to the first bit in the interval, then the secret bit may not be in
the lower half of the part. We solve this by sampling the starting position
within the sample interval as defined in Figure 5.7. Let Ia be the intervals
for secret a and Ib the intervals for secret b. Figure 5.6 shows an example of
such a partitioning from our implementation of the attack, where the thick,
green solid lines correspond to correct intervals, and the thin, pink solid lines
correspond to the start and end of the sample intervals. In Figure 5.8 we
give the pseudocode for the reduced Slice-and-Dice attack using the new
partitioning function.

attack on ramstake 76

Figure 5.6: Partitioning from correct intervals enclosed in solid, pink lines and
sampling intervals to guess the remaining parts as green lines with dashed red
sampling range.

Partition(I)
1 : X ← {}
2 : for ILABEL

i,lone
in I

3 : if LABEL = correct
4 : X ← X ∪ i
5 : elseif LABEL = sample
6 : Let Iempty

j,le
be the preceeding interval with j < i.

7 : pos = i−min(le, lone/z)

8 : x $←− [pos, i+ lone]
9 : X ← X ∪ x

10 : return X

Figure 5.7: Partitioning for Slice-and-Dice attack.

ReducedSnD(pk, G, p, Ia, Ib)
1 : while True
2 : P ← Partition(Ia)
3 : Q← Partition(Ib)
4 : B ← construct basis for La,b,H from P,Q

5 : B∗ ← LatticeReduction(B) ▷ Returns short vectors.
6 : if ∃b∗a, b∗b ∈ B∗ s.t. b∗aG+ b∗b = pk
7 : return b∗a, b

∗
b

Figure 5.8: Reduced Slice-and-Dice attack.

In the following examine the success probability that a partition as output
by Algorithm 5.7 is correct, particularly, motivate the choice for sampling
in the range [i−min(le, l/z), i+ lone] for the intervals sample intervals. To
that end, we give a formula to count the expected number of correct starting
positions for a generic sampling range and determine the optimal width for
sampling in the empty interval. Finally, we instantiate our result to derive
the overall success probability of the attack.

attack on ramstake 77

Number of Correct Positions. Consider the bit string spanning an
interval Iempty

−le,le
, an interval Isample

0,lone
and an interval Izerolone,lzero

. Let j be the
(unknown) position of a one in this bit string, and let pos be the starting
position of a part which should serve as input to the Slice-and-Dice attack.
Then j is in the lower half of the part defined by pos only, if the distance
from j to pos is at most as large, as the number of zero bits in the remaining
part, which ends at position le + lone + lzero. More formally, this is the case if

j − pos ≤ lone − j + lzero .

The number of correct positions can be bounded by

minj := min(j + le, lone − j + lzero) ,

where the first is the number of possible values for j < pos, and second is the
maximal number of proceeding zeros. That means, larger values of le, lone
and lzero result in a larger number of correct positions, and the maximal
number of useful positions in the empty interval can be bounded by the size
of the subsequent sample and zero intervals.

Consider the number of correct position for possible values of j, which
are depicted in Figure 5.9.

• The number is maximal, if j is located in the center of the interval
[−le, lone + lzero], resulting in (le + lone + lzero)/2 correct positions.

• The number is minimal, if j is located on the boundaries of the sample
interval, i. e., [0, lone].

– For example, for j = 0 the correct starting positions are [−le, 0],
the cardinality of which is bounded by min(le, lone + lzero) ≤
min(le, 2lzero).

– For j = lone − 1, a part is correct if it starts in the interval
[lone − lzero, lone], resulting in min(le + lone, lzero) = lzero correct
positions.

Consequently, the number of correct positions is always bounded by le ≤ 2lone.
We bound the position to sample a part with an offset of min(lone, l/z). In
our experimental results in Section 5.3.3 we determine concrete values for z.

Average Number of Guesses. For each individual part we can now
express the number of positions that results in a correct partition.

E[minj] =
1

lone

lone∑︂
j=1

min(j + le, lone − j + lzero) ,

where we assumed, that the secret bit position j is uniformly distributed
in I

sample
i+l,lone

, such that each position occurs with probability 1/lone.
A sampled part is correct, if j is in the lower half of the part. We can

bound the probability that a part is correct using the value minj , which is
the minimal number of correct positions that may occur for the sample X in
Figure 5.7. Let size(X) = lone −min(le, lone/z) be the size of the sampled
part

attack on ramstake 78

I
sample-zero
le,lzero

I
sample-one
0,lone

I
empty
−le,0

First case:
j = 0

#correct pos: min(j + le, le + 1)

#correct pos: min(lzero + lone − j, lzero)
Second case:
j = lone − 1

−le 0 lone − 1 lzero − 1
lsb msb

Figure 5.9: Number of correct positions for the secret position of the bit if j = 0
(First case) and j = lone − 1 (Second case) for a successful Slice-and-Dice attack in
the intervals Izero

i−1, I
non-zero
i , Izero

i .

[TS19] Tiepelt and Szepieniec, “Quantum
LLL with an Application to Mersenne Num-
ber Cryptosystems”

[Nat17] National Institute for Standards and
Technology, Post-Quantum Cryptography Call
for Proposals

P
[︃
j ≤ size(X)

2

]︃
≥ minj

size(X)
,

then the expectation is

E
[︃
j ≤ size(X)

2

]︃
≥E

[︃
minj

size(X)

]︃
=
E[minj]

size(X)
,

where we assumed that the number of correct positions minj and the size
of the sampling range are independent, and that j is uniformly distributed
over all parts.

Finally, let ωa, ωb be the number of ones located in the sample intervals.
Then the number of guesses until a correct partition is found (and thus
number of iterations of the while-loop) in Figure 5.8 is(︄

E
[︃
j ≤ size(X)

2

]︃ωa+ωb
)︄−1

. (5.4)

Remark 6. The reduced Slice-and-Dice attack can speed-up using Grover’s
algorithm similar to the original Slice-and-Dice attack as described in [TS19].
The corresponding quantum variant would require a number of Grover iterations
relative to the square-root of Equation (5.4).

5.3.3 Experimental Evaluation

All phases of the attack can be computed in a few dozens of hours. However,
our code was not optimized for speed and large parts can be parallelized.
The implementation also generates the diagrams visualizing the attack, of
which we present a selection in this work.

The implementation utilizes the Ramstake code submitted to the first
round of the NIST post-quantum competition [Nat17]. We modified the
error correcting code by reducing the number of codewords to ν = 1 to
artificially increase the probability of a decryption failure. The increased
failure probability is about 2−13 for the simplified Ramstake KEM. This

https://github.com/mtiepelt/ramstake-failure-attack

attack on ramstake 79

simplification does not, to the best of our knowledge, give any advantage to
an adversary except for the practical generation of failures.

The demonstrator takes as input the public key pk := (c, sd) and outputs
an estimation of the secret key sk := (a, b) as well as the evaluation of the
partitioning procedure. To collect failing ciphertexts the demonstrator has
access to a decryption oracle in form of the modified Ramstake code that
returns a ⊤ in case of a successful key exchange and ⊥ in case of a decod-
ing error or a re-encryption failure. The latter cases are indistinguishable.
Further, our demonstrator does not perform the actual lattice reduction.
Instead it takes the secret key a, b as an additional input to evaluate if the
approximated intervals allow to derive a correct partitioning and computes
the respective success probability.

Precomputation. First, we generate a set of random decryption failures
and successes. The samples allow to estimate the probabilities that a given
bit position in a, b causes more than t error bytes in the shared noisy secret
S resulting from the encryption with c, d as described in Equation (5.2).
This step results in a look-up table mapping bit positions in c, d to failure
probabilities for each bit position in the secret. The precomputation can
be performed without access to the decryption oracle and only needs to be
computed once.

Collecting Decryption Failures. Next, we collect a set of decryption
failures for the attacked secret key by querying the oracle with random
ciphertexts and keep those that lead to a decryption failure.

Interval Detection. Given the set of decryption failures, one can perform
the interval detection as in Section 5.3.1. From our experiments, the zero in-
terval has length about lzero ≈ lone/2 and the empty interval have length about
l ≈ lone/4. We examine the success probability that result from our empirical
results, the sample range [i−min(lone, lone/4), i+ lone] consists of ((5lone)/4)
bit positions. The number of correct starting positions for j are distributed
over the range [1 : lone] as (lone/4)...(3lone/4)...(7lone/8)...(3lone/4)...(lone/2),
depicted in Figure 5.10. The probability for a uniformly random part to be
correct follows as:

P
[︃
j ≤ size(X)

2

]︃
=

1

lone

lone∑︂
j=0

min(j +
lone
4
, lone − j +

lone
2

)

≈ 39lone
80

+
3

8
.

And thus the probability for one of the parts the be sampled correctly is at
least

(39lone/80) + (3/8)

(5lone/4)
=

39

80
+

3

10lone
≥ 39

80
. (5.5)

This results in an overall success probability of about (39/80)ωa+ωb .

5.3.4 Empirical Cost Results

We applied our attack to multiple secrets generated pseudo-randomly to allow
deterministic verification. The precomputation phase has been performed

attack on ramstake 80

msblsb

position of j in interval

(lone/2)
(3lone/4)

(7lone/8)
(3lone/4)

(lone/2)
(lone/4)

Number of correct starting positions relative to j

lone + (lone/2)lone

(3lone/4)

(5lone/8)

(lone/2)

(lone/4)1−(lone/4)

Figure 5.10: Distribution of correct positions for j ∈ [0 : lone − 1] with lzero = (lone/2)
and l = (lone/4), where all values have been shifted by 1 to avoid a−1 in the position
labels.

Table 5.3: Experimental results of our implementation where the column “#ones
in correct” denotes the number of secret positions of ones positioned in correct intervals,
and “#parts” the number of intervals that require sampling. #Grover corresponds to
the number of Grover iterations in a quantum variant of the Slice-and-Dice attack to
recover the full secret.

Decryption
failures

#ones
in correct

#parts
P[success]

per sampled part
#Grover

29 131 125 0.474 268

210 161 95 0.477 252

211 167 89 0.482 248

212 169 88 0.482 246

using 64 samples generated from the seed ”c0ffee”. An excerpt of our results
is summarized in Table 5.3. An extensive version can be found in Appendix A,
showing the average number of positions located in the correct intervals, the
expected number of parts to be sampled and the expected success probability
for each part. Additionally, we give the number of Grover iterations required
to recover the secret key (cf. Section 4.1.3).

Throughout our experiments all secret ones could be identified either
in correct or sample intervals. An example of the partitioning is shown in
Figure 5.6, where the correct parts are solid vertical lines with the lower half
is marked as dashed horizontal lines. The sample range is enclosed by the
numbered solid vertical lines. The positions of the ones in the secret are
added as vertical dashed lines for verification purposes.

Complexity. The attack requires 264 · (212/6) ≤ 274 decryption queries to
collect the failing ciphertexts. The factor 1/6 for the number of decryption
failures arises from the existence of 6 failed codewords in the original cipher
while our estimates from the simplified implementation use only a single
codeword for each failure.

The precomputation and estimation of the secret grows linear in the
number of sample and decryption failures and can be neglected. Our esti-
mates allow to capture an average of 168 secret positions in correct intervals,
suggesting that at most 88 random parts have to be sampled. For the average
value of the preceding empty space we have le ≈ (lone/4), for the trailing
empty space lzero ≈ (lone/2), thus supporting our analysis. The success

attack on ramstake 81

[DAn+19a] D’Anvers et al., “Decryption
Failure Attacks on IND-CCA Secure Lattice-
Based Schemes”

[DRV19] D’Anvers, Rossi, and Virdia, (One)
failure is not an option: Bootstrapping the
search for failures in lattice-based encryption
schemes

probability for each part follows as 0.484 resulting in about 292 classical
guesses or 246 Grover iterations to extract the secret. Figure 5.11 shows
the relation between the number of collected failures and the number of
Grover iterations required to find the secret. In summary, we can break
the IND-CCA security of Ramstake using 274 classical queries and about 246

Grover iterations.
It should be noted that this may be an infeasible number of queries,

which is why for evaluation in the NIST process, the attacker is generally
constrained to a maximum of 264 queries. Techniques such as failure boost-
ing [DAn+19a], which increase the failure probability of ciphertexts and
which have been applied to encryption schemes based on the learning with
errors problem, may reduce the number of required decryption queries. More-
over, recent results [DRV19] for these schemes show that information about
previous failures can be used to bootstrap the search for new failures. We
did not investigate if these techniques are applicable to Mersenne prime
schemes.

Figure 5.11: Outline of number of Grover iterations required for the quantum variant
of the reduced Slice-and-Dice attack (cf. Figure 5.8), relative to the number of
decryption failures.

Implications on Mersenne-756839. The scheme diverges by the error
term d̂, which introduces ω := 128 additional error positions. We consider
those insignificant compared to the large number of about 2ω2 byte errors
in each encoding, and therefore assume that a similar heuristic can be
constructed given access to decryption failures.

However, the error correcting code deployed by the Mersenne-756839
cryptosystem has a failure probability of 2−239, making it significantly more
difficult to find decryption failures. While the precomputation phase can be
adapted, the actual attack phase seems infeasible.

Parts of this chapter are verbatim from our
publications [BT21a; BT21b].

[Nat22] National Institute for Standards and
Technology, NIST: Selected Algorithms 2022

[CNS17] Chailloux, Naya-Plasencia, and
Schrottenloher, “An Efficient Quantum Colli-
sion Search Algorithm and Implications on
Symmetric Cryptography”

6
On the Cost of Universal Signature Forgery in
SPHINCS+

In this chapter we explore the possibilities of crafting a universal forgery
from a second preimage of a hash function in the SPHINCS+ signature
scheme. The SPHINCS+ scheme was analyzed during the third round of the
NIST competition. As part of the analysis we provide a cost estimation of
performing the attack on a fault-tolerant quantum computer.

Objective & Contribution. The SPHINCS+ signature scheme has been
chosen by the NIST as one of finalists of the post quantum competition
[Nat22]. Consequently, it is important to study how the signature scheme
can withstand against from quantum computers, and how the properties on
which its security is based on are affected within the scheme. This study
explores which points of attack the signature scheme offers, how these points
can be best exploited, and what the expected costs are that an adversary
would have to implement such an attack on a quantum computer. To the
best of our knowledge the specifications from the third round carry over to
those of the finalists.

We are interested in evaluating the security of SPHINCS+ against generic
preimage attacks of the underlying hash function, specifically those utilizing
QAA. When applying quantum amplitude amplification, the input database
is the preimage space of the hash function in question, and the membership
oracle compares the hash functions output to a given image. To mount such
an attack the hash function has to be implemented as a quantum circuit and
used in every iteration of the QAA algorithm (cf. Section 3.1.1). Notably, the
computation of the hash function is the dominant cost in each such iteration.

As a first contribution (cf. Section 6.1), we identify the XMSS component
in SPHINCS+ to admit the attack with the cheapest hash function oracle for
Grover’s algorithm. Subsequently, in Section 6.4, we estimate the cost of
implementing the complete attack in the context of fault-tolerant quantum
computers (cf. Section 3.3.3) . As a result, we suggest that a universal
forgery can be constructed in 1.55 ·2101 logical-qubit-cycles, which is defined
as the product of surface code cycles and logical qubits (we introduce the
metric in Section 6.1), and which is supposed to correspond to the classical
hash function invocations. The previously most-well known attack required
2129.5 [CNS17] classical hash function invocations. We note that this does
not imply an attack on, or the insecurity of the SPHINCS+ signature scheme.

83

on the fault-tolerant cost of computing a second preimage 84

[Amy+16] Amy et al., “Estimating the Cost
of Generic Quantum Pre-image Attacks on
SHA-2 and SHA-3”

[CNS17] Chailloux, Naya-Plasencia, and
Schrottenloher, “An Efficient Quantum Colli-
sion Search Algorithm and Implications on
Symmetric Cryptography”

Following the suggestion by NIST to review the security in terms of a
maximal depth for quantum circuits, it is clear that even for a depth of 296

the attack cannot be implemented without further constraints. A detailed
analysis of the impact if introducing a MaxDepth limitation for the quantum
circuits is out of scope for this manuscript.

6.1 on the fault-tolerant cost of computing a second preimage

In the context of fault-tolerant quantum computing, the introduction of
error correction mechanisms can result in a significant overhead of resources
required to implement an algorithm. This section presents our methodology
of estimating the resources across the different layers of a fault-tolerant
quantum architecture. including the Application, Logical and Quantum error
correction layer (cf. Section 3.3). The objective is to provide an estimation
of the attack cost corresponding to resources the quantum error correction
layer.

We adopt the concept of logical-qubit-cycles, LQC, as quantum cost metric
for our analysis. A logical-qubit-cycle is the product of the surface code cycles
and the number of logical qubits to implement the circuit in a fault-tolerant
manner. This is motivated by the idea, that the cost of each such cycle is
roughly equivalent to the cost of a single (classical) hash function invocation
[Amy+16, As. 4 and Cost Metric 1], allowing to compare classical and
quantum cost. We further consider this metric to be the most fitting in
comparison to the time-space product, i. e., number of Grover iterations and
number of qubits, for the best generic attack in [CNS17].

Let Qlogical
G be the number of logical qubits to implement a quantum

circuit. Define Qlogical
MSD to be the number of logical qubits to perform the

magic state distillation as outlined in Section 3.3.3. Let #SCC(SPR-Attack)
be the number of surface code cycles associated with the implementation of
a quantum preimage attack SPR-Attack. The number of logical-qubit-cycles
is considered to be the total cost of the attack:

LQC(SPR-Attack) = #SCC(SPR-Attack) · (Qlogical
G + Qlogical

MD) . (6.1)

In the following we provide an overview of the cost elements involved in
each layer, and how they carry over to the next lower layer. The estimation is
generous-to-the-attacker, meaning that we lower bound several cost elements
on the way and only consider the dominant cost.

6.1.1 Application Layer

In Section 6.2, we explore the cost of crafting a universal signature forgery
relative to the cost of implementing a membership oracle for Grover’s al-
gorithm. We begin by assuming that such an attack requires to compute a
second preimage. With this premise in mind, we identify the component
within the SPHINCS+ framework that results in the fewest consecutive calls
to a hash function. This is done because the computation of the hash func-
tions is the dominant cost to implement an iteration in the search using
Grover’s algorithm. Additionally, we determine the probability ppreimage that

on the fault-tolerant cost of computing a second preimage 85

a second preimage attack is successfull, relative to the (pre-)image space
of the hash function in question. In the subsequent paragraphs we provide
results in support of quantifying the cost of Grover’s algorithm in this setting.

Remark 7. To craft a universal signature sometimes incurs an additional
classical cost: a forged signature needs to map to the correct address ADRS (cf.
Section 4.2.2) in the SPHINCS+ hypertree corresponding to a given public-key
secret-key pair. This cost is denoted costADRS and addressed individually for each
proposed forgery attack. The cost is purely classical, and additive, meaning it
does not scale the cost of the second preimage attack, and has no impact on the
scaling of the fault tolerant resources. Later, we will show that this additional,
classical cost is much lower than the quantum cost. To provide a conservative
analysis we do not account for this in our final cost metric.

Success Probability of a Second Preimage Attack. Assume that we
are given a hash functionH : {0, 1}n1 → {0, 1}n2 along with a preimage X,
and further assume that hash functions perform like random functions. We
are interested in the probability ppreimage that there exists a second preimage
X ′, such thatH(X) = H(X ′), relative to the size of the image and preimage
space.

We consider two cases, where the first is equality of the length the
preimage and image, n1 = n2, and the second where the preimage space
is larger, i. e., l · n1 = n2 for l > 1. In Section 6.2, we will instantiate the
following two lemmas: For the first case, Lemma 2 bounds the probability
that such a preimage exists.

Lemma 2. For a random function H : {0, 1}n1 → {0, 1}n2 , i. e., every image
being chosen uniformly at random and independent, with n1 = n2, given an
image y, the probability of a second preimage existing is ppreimage ≥ 0.632.

Proof.

P [∃x ∈ {0, 1}n1 : H(x) = y] = 1− P [∀x ∈ {0, 1}n1 : H(x) ̸= y]

= 1−
∏︂

x∈{0,1}n1

P [H(x) ̸= y]

= 1−
∏︂

x∈{0,1}n1

2n2 − 1

2n2

= 1−
(︃
2n2 − 1

2n2

)︃2n1

= 1−
(︃
1− 1

2n2

)︃2n1

≥ 1− 1

e
≥ 0.632

(6.2)

In the last step we used that n1 = n2 along with the bound (1 − 1/y)y ≤
1/e.

For the second case, l · n1 = n2 with l > 1, the probability of a second
preimage existing is bound by

on the fault-tolerant cost of computing a second preimage 86

1−
(︃
1− 1

2n2

)︃2n2/l

.

Since (1− 1/2n2) < 1, the success probability of a second preimage existing
decreases for increasing values of l. We consider specific values of l and the
resulting success probability later.

Quantum Preimage Search. Given a string X ∈ X a quantum preimage
search for a value X ′ can be implemented using Grover’s search algorithm
(cf. Section 3.1.1) over the search space X . The membership oracle’s imple-
mentation is the computation of the functionH, the comparison withH(X),
and the uncomputation of H. If the uncomputation is not performed, fresh
qubits would be required every iteration, resulting in an exponential increase
in memory. The procedure is the canonical instantiation of the circuit in
Figure 3.3 from Section 3.1.1.

The cost of performing the search has three elements: The cost of imple-
menting a single Grover iterations, i. e., the membership oracle identifying
the (second) preimage, the miscellaneous operations such as the inversion
over the mean, and the number of repetitions of the Grover iteration.

The cost to implement the miscellaneous operations grows linearly with
the search space, but is independent of the remaining attack. The cost to
implement the oracle grows with the cost of implementing the membership
function in question. In the setting of SPHINCS+, the membership function
is the consecutive application of a hash function i. e.,H(...H(x)). The cost of
implementing such a function increases with more consecutive invocations,
and we denote this number of invocations by #H. The number of iterations
is determined by the ratio of the preimage space and the number of second
preimages.

Note that if multiple preimage exist, than Grover’s algorithm requires
fewer iterations, and may not output a preimage with large probability
if the number of iterations is too large. However, even if the number of
preimages is not known, the complexity of first determining the number of,
and subsequently finding one preimage, is still inO

(︁
2λ/2

)︁
, As a simplification

and to provide a conservative analysis we assume the number of second
preimages to be exactly 1, resulting in ⌊π4 2

λ/2⌋ iterations of the quantum
algorithm (cf. Lemma 1).

6.1.2 Logical Layer

In Section 6.3, we report on the amount of logical resources required to
implement an oracle for Grover’ algorithm, the miscellaneous operations, and
the total resources to implement the second preimage search. Particularly
we report the following values from our Q# implementation:

• The number of CNOT, Clifford and T gates: GCNOT,GClifford,GT

• The T-Depth of the quantum circuit: GT-Depth

• The number of logical qubits used: Qlogical

on the fault-tolerant cost of computing a second preimage 87

[Amy+16] Amy et al., “Estimating the Cost
of Generic Quantum Pre-image Attacks on
SHA-2 and SHA-3”

[FDJ13] Fowler, Devitt, and Jones, “Surface
code implementation of block code state dis-
tillation”

6.1.3 Quantum Error Correction Layer

We proceed to estimate the amount of resources required to implement the
logical resources in a fault-tolerant manner, given faulty gates and qubits
with the parameters from Assumption 3.3.1. Our primary resources that we
consider are the logical-qubit-cycles LQC, which are the product of surface
code cycles #SCC the number of logical qubits Qlogical.

The number of surface code cycles as well as number of logical qubits
required implement the quantum circuit in a fault-tolerant manner have two
sources: A surface code to embed all CNOT and Clifford gates, and the magic
state distillation required to implement T gates. We review our procedure to
derive the count of surface code cycles for each component.

Surface Code for CNOT and Clifford gates. The failure probability of
each CNOT and Clifford gate should be at most

poutG ≤
1

GCNOT + GClifford ,

such that the application of all gates together succeeds with probability(︃
1− 1

1/poutG

)︃1/pout
G

≤ 1

e
∈ O(1) , (6.3)

where 1/poutG is the total number of CNOT and Clifford gates. While this
would require a constant number of repetitions of the complete algorithm,
we assume the success probability to be approximately 1 to provide a more
conservative analysis.

With poutG and the input error probability pinG of a gate from Assump-
tion 3.3.1 at hand, we can determine the surface code distance d using
Assumption 3.3.3, i. e., the smallest d such that Equation (3.1) holds. This
determines the number of surface code cycles, i. e., #SCCG ≈ d, required
to implement the CNOT and Clifford gates. Additionally, Assumption 3.3.3
provides the number of physical qubits required to implement the surface
code.

Magic State Distillation for T gates. Similarly, the failure probability
of each T gate should be at most

poutT ≤
1

GT ,

such that the application of all gates succeeds with probability close to 1 (see
Equation (6.3)).

One can use the Algorithm of [Amy+16, Alg. 4] and [FDJ13, Sec. 2]
to compute the number of layers of magic state distillation required, where
Assumption 3.3.3 provides the surface code distance and Definition 3.3.2
provides means to compute the number of surface code cycles required for
each distillation. Let #SCCMSD be the number of surface code cycles for
each layer of T gates.

Note that the T-gates for each gate-layer of the circuit have to be produced
to apply the layer, i. e., we can only apply a T-gate for which a magic state has
been produced. The production of magic states requires formidable amount
of logical qubits. However, after a distillation procedure is completed, these

universal signature forgeries in sphincs+ 88

qubits may be reused for future distillation. With Assumption 3.3.2 at
hand, we can look at each layer independently. That means, we determine
how many parallel magic state distillations should be used to produce the
magic states, where a larger number of distilleries increases the overall
number of logical qubits required. Specifically, given a number of magic
states #MagicStatesPerDistillery produced by each distillery, one can identify
the number #Distilleries of Distilleries required such that

GT

GT-Depth > #MagicStatesPerDistillery · #Distilleries .

Logical Qubit Cycles. To compute the number of logical-qubit-cycles we
consider the dominant number of surface code cycles, i. e., the number of
surface code cycles that dominates the fault-tolerant implementation. For
each layer of T gates, #SCCMSD surface code cycles are required.

With Assumption 3.3.2, the CNOT and Clifford gates are spread evenly
over all layers and all qubits in the quantum circuit, the average number of
surface code cycles required on each such layer is

GG/(GT-Depth · Qlogical) ·#SCCG ,

where G ∈ {CNOT,Clifford}. The number of surface code cycles used to
compute the logical qubit cycles is then

#SCC = max(GG/(GT-Depth · Qlogical) ·#SCCG,#SCCMSD) .

6.2 universal signature forgeries in sphincs+

A universal forgery attack enables the construction of a signature on an arbi-
trary message, such that the signature is verified correctly when presented
with a challenge public key. In this context, the procedures in the subsequent
subsections are from the perspective of an attacker who is provided with
a public key and access to a signing oracle that provides valid signatures.
From this perspective, we consider the cost relative to breaking the preimage
resistance of a hash function using quantum amplitude amplification. Con-
sequently, we identify the attack that minimizes the cost to implement the
membership oracle. All of the proposed attacks follow the same structure,
and the resulting forged signature is composed of the three components
from Table 6.1.

Table 6.1: Notation for attack procedures on SPHINCS+.

Encoding Description

X Part of a valid signature from the signing oracle.
Y Part of a signature from a freshly generated public-key secret-

key pair.
Ẑ Part of a universal forgery that connects X and Y using a

second preimage.

Assume in the following that we want to produce a valid signature

σ̂MSPHINCS+ on message M . We apply the procedure in Figure 6.1 to the

universal signature forgeries in sphincs+ 89

1The value l is calledm in the SPHINCS+
specification [Hül+20].

four components, the initial message digest H, the FORS signature, the
WOTS signatures and the XMSS signatures. For each component we analyze
the cost on the Application layer.

Step 1 Request a signature

σM
SPHINCS+ = (R, σvkFORS

HT , σmd
FORS) ,

signing a messageM .

Step 2 Generate a fresh SPHINCS+ public-key secret-key pair
vkSPHINCS+ , skSPHINCS+ that can be used to sign any message
M . LetM be the target message for the universal forgery.

Step 3 Generate a fresh signature

σMSPHINCS+ ← Sign(skSPHINCS+ ,M) .

Step 3a For some attacks, Step 3 has to be repeated multiple times
to find a randomness R that results in the correct parameter
ˆADRS. This incurs an additional cost of costADRS.

Step 4 Compute a second preimage X̂ in a hash function in one of
SPHINCS+ components.

Step 5 Embed the preimage X̂ and the genuine signature σM
SPHINCS+

into the freshly generated signature σMSPHINCS+ of the target

message, resulting in the forgery σ̂MSPHINCS+ .
Figure 6.1: Attack procedure for a preimage attack on SPHINCS+.

6.2.1 (Universal) Forgery from Pre-Image in the Message Digest

Recall that the initial message digest in the signature generation of the
SPHINCS+ scheme as in Section 4.2.2 computes the map

md, idtree, idleaf ← H(R, vkSPHINCS+ .sd, vkSPHINCS+ .root,M) ,

where |md| depends on the height of the hypertree and the FORS instance1,
M ∈ {0, 1}∗ is the arbitrarily sized message, R ∈ {0, 1}λ is a random string
and vkSPHINCS+ .sd, vkSPHINCS+ .root are fully defined by the corresponding
public key.

Forgery. The universal forgery attack on the message digest is a special
case, where the second and third step of procedure in Figure 6.1 can be
skipped. This is the case, because a colliding message digest immediately
results in a forged signature. Note that the attack requires to compute a
second preimage rather than any collision, because one of the preimages is
already fixed by the requested signature from Step 1.

universal signature forgeries in sphincs+ 90

2The primary message digest is called
“tmp_md” in the specification [Hül+20].

[Hül+20] Hülsing et al., SPHINCS+-
Submission to the 3rd round of the NIST post-
quantum project

Since the goal is to forge a signature on any message, the only degree of
freedom to manipulate is the random string R. Therefore, one needs to find
a preimage R̂, such that

md, idtree, idleaf ← Hmsg(R̂, vkSPHINCS+ .sd, vkSPHINCS+ .root,M) ,

which can be achieved by running QAA with R̂ ∈ {0, 1}λ as the input search
space, performing Step 4 in Figure 6.1. The forged signature is then

σ̂MSPHINCS+ = (R̂, σHT, σ
M
FORS) .

Figure 6.2 shows the placement of the attack in the SPHINCS+ framework.

H(R̂, vkSPHINCS+ .sd, vkSPHINCS+ .root,M)

σ̂MSPHINCS+ = (R̂, σHT, σ
md
FORS,)

extract

σxmss,1

vkSPHINCS+ .root

vkWOTS+,1

XMSS tree 1

vkFORS

rFORS,1 rFORS,k

M

md

Figure 6.2: Simplified SPHINCS+ scheme with the universal forgery using a second
preimage of the message digest for message M with preimage R̂ in the dashed box.

Cost. The forgery requires a preimage search with a single invocation
of the hash function, thus #H = 1. Forging a signature using the initial
message digest does not require any overhead from finding a the correct
address ADRS, i. e., Step 3a in Figure 6.1 does not need to be applied, since
the hypertree of the honest signature σ remains the same. Correspondingly,
costADRS = 0.

Success Probability. The bit length lmd of the primary message digest2

used in the signature of the subsequent component (the FORS instance), is
of fixed length [Hül+20, Sec. 6.1]

|md|+ |idtree|+ |idleaf|

=

⌊︃
(k log t+ 7)

8

⌋︃
+

⌊︄
(h− h

d + 7)

8

⌋︄
+

⌊︄
h
d + 7

8

⌋︄
> λ ,

(6.4)

depending on the number of layers of the hypertree, the total height of the
hypertree and the number of leaves and trees in the FORS instance.

With the random bit string R̂ ∈ {0, 1}λ being shorter than the message
digest, we can compute the probability of a preimage existing as in Table 6.2.
The table shows that for all parameter sets, the probability is much smaller
than 1, but strictly larger than 2−88.

universal signature forgeries in sphincs+ 91

Table 6.2: Probability that a second preimage exists (cf. Section 6.1.1, Equation (6.2))
when searching over preimage space of the randomness R of bitlength λ and the
image space of the message digest md of length according to Equation (6.4). The
ratio l > 1 corresponds to the relative size of the exponents of the pre-/image space.
The table shows the probability for all SPHINCS+ parameter sets (cf. Table 4.1).

λ |md| ≥ l ≤ P
[︁
∃x ∈ {0, 1}λ : H(x) = y

]︁
128 184 1.44 2−56

128 214 1.67 2−86

192 254 1.32 2−62

192 280 1.45 2−88

256 323 1.26 2−67

256 331 1.29 2−75

Corollary 2 (Message Digest Forgery). There exists an algorithm that
computes a universal signature forgery with probability at least 2−88, and
costADRS = 0, that requires to compute a second preimage of the hash function
H with quantum oracle depth at most #H = 1.

Remark 8. The message digest attack gives rise to an existential forgery attack
with a single oracle depth, and a lower failure probability of ppreimage ≥ 0.632

i. e., namely when including the message space ofM for the second preimage,
since this allows to match the value of n1 to that of n2. As such the two inputs
that can be modified and exchanged in the preimage attack are M and R
However, note that the cost of perform the second preimage search also scales
with the size of the search space, which may result in a more expensive attack.

6.2.2 Universal Forgery from a FORS Signature

Recall the FORS signature as described in Section 4.2.2. A signature

σmd
FORS = {sk

(i,j)
FORS,AuthFORS,i}i

consists of a FORS secret key (a leaf of the tree) and an authentication path
from the leaf to the root, which is the FORS public key. Each node of the
hash tree is the output of a hash function H2 that takes as input the two
parent nodes, each of bit-length λ, and outputs a n = λ bit hash value. All
hash trees are combined by computing the hash of all rFORS,i nodes, resulting
in the a virtual root node vkFORS that combines the FORS instance in a single
node.

Forgery. We follow the steps from Figure 6.1, where in Step 3 the FORS
signature is computed as

σmd
FORS = {ski,Authi}i .

During a verification, the FORS public key is computed as

vk
md
FORS ← H(vkSPHINCS+.sd,ADRS, rFORS,1, rFORS,2, ..., rFORS,k) .

As a first step, the signature generation step needs to be repeated multiple
times as in Step 3a of Figure 6.1, to find a string R̂ that results in an address

universal signature forgeries in sphincs+ 92

ˆADRS that maps to the same FORS instance as ADRS. We will analyze the
cost of this later.

To forge a signature, one can compute a second preimage for the FORS
public key on one of the authentication paths, where rFORS,1 is the hash of
two parent nodes p1, p2, i. e.,

rFORS,1 ← H2(vkSPHINCS+ .sd, ˆADRS, p1, p2) .

Note that one of the two parents, w.l.g. say p2, is fixed, for example by
depending on the hash with the public key seed as input, and can not be
manipulated in order to provide a universal forgery.

That means, the function in question for the second preimage is

vkmd
FORS ← Hk(vkSPHINCS+ .sd, ˆADRS,H2(vk.sd, ˆADRS, p̂1, p2), rFORS,2, ..., rFORS,k) .

The corresponding QAA uses p̂1 ∈ {0, 1}n as the input search space,
performing Step 4 from Figure 6.1. The forged signature is then

σ̂MSPHINCS+ = (R̂, σvkFORS
HT , σ̂MFORS) .

Figure 6.3 shows the placement of the attack in the SPHINCS+ frameworks,
Figure 6.4 the particular attack on the FORS scheme.

H(R̂, vkSPHINCS+ .sd, vkSPHINCS+ .root,M)

σ̂MSPHINCS+ = (R̂, σ
vkFORS
HT , σ̂md

FORS,)

extract

σ
rXMSS,2
xmss,1

vkSPHINCS+

vkWOTS+,1

XMSS tree 1

vkFORS

rFORS,1 rFORS,k

M

md

Figure 6.3: Simplified SPHINCS+ scheme with the target for the seconds preimage
attack for the universal forgery for message M in the dashed red box. The dotted
blue box marks the fresh signature σ.

Cost. The only degree of freedom are the parents in the authentication
path AuthFORS,i. As a result, the second preimage has to be computed from
the first level of any of the FORS tree, and consequently requires to chain
two iterations of H2, namely one for the first layer of the FORS tree, and
one to compute the vkFORS from all the FORS root nodes. As such, we can
implement a forgery attack with a second preimage search of oracle depth
#H = 2.

Next, we analyze the cost of Step 3a (c.f. Section 6.2), the repeated
generation of a signature to match the correct FORS instance. When con-
struction a SPHINCS+ signature, we can choose the FORS address resulting
in the WOTS+ instance associated with the genuine signature σ. Recall

universal signature forgeries in sphincs+ 93

vkFORS

σ̂md
FORS =

(︁
sk(1,2)FORS,

ˆAuthFORS,1

sk(2,i)FORS,AuthFORS,2
...

sk(k,j)FORS,AuthFORS,k
)︁

r1

FORS tree 1

p̂1p2

sk(1,1)FORS sk(1,2)FORS sk(1,3)FORS sk(1,4)FORS

rk

FORS tree k

Figure 6.4: Simplified SPHINCS+ scheme with the attacked part for the universal
forgery for message M in the dashed red box. The position of the generated FORS
signature in the SPHINCS+ tree and of the forged values in the respective FORS tree
are encapsulated in the dotted blue box. Note the position of the leaf depends in the
message, and the string of that leaf is determined by public components, thus the
roots that are hashed into the vkFORS cannot be chosen freely. The first node that can
be used for a preimage attack the sibling p1 on a second level of a hash tree.

[Hül+20] Hülsing et al., SPHINCS+-
Submission to the 3rd round of the NIST post-
quantum project

that the SPHINCS+ hypertree has d layers, where the first layer has a single
XMSS tree with the SPHINCS+ public-key root. This XMSS tree has h

d leaves,
each connected to an XMSS tree. Accordingly, layer d− 1 has 2h−h′

XMSS
trees, and a total of 2h−h′ · 2h′

= 2h WOTS+ public keys. That means that
each SPHINCS+ hypertree corresponds to 2h FORS instances. The proba-
bility of hitting the correct instance when generating a new signature is
costADRS = 2−h. Note that for all parameters in SPHINCS+ h ≤ 68 [Hül+20,
Table 3].

Success Probability. When attacking the FORS component the input and
output space of the second preimage search have the same dimension, thus
we can apply Lemma 2 to find a preimage with failure probability at most
ppreimage ≥ 0.632 as in Lemma 2.

Corollary 3 (FORS Forgery). There exists an algorithm that computes a
universal signature forgery with probability at least 1 − ppreimage ≥ 0.632,
and costADRS ≤ 2−68, that requires to compute a second preimage of the hash
function H2 with quantum oracle depth at most #H = 2.

6.2.3 Universal Forgery from WOTS+ Signature

Recall the WOTS signature as described in Section 4.2.2. A signature
σ·
WOTS+,1 signs either a block of a FORS public key, or a block of any of the

root nodes of the XMSS trees. Without loss of generality say that we forge a
signature on a node rXMSS,2. Note that this is without loss of generality since
the bitlength of all nodes and the FORS public key, as well as the procedure

universal signature forgeries in sphincs+ 94

[Hül+20] Hülsing et al., SPHINCS+-
Submission to the 3rd round of the NIST post-
quantum project

3One could alternatively consider the trade-
off of a depth 1 with probability ≥ 1

15
, or

depth ≤ 15 with probability 1.

to produce the signature are the same. For the sake of readability, we denote
the concatenation of rXMSS,2 and its checksum as X := rXMSS,2||checkrXMSS,2

as in Section 4.2.2.
The signature is a chain of hash function invocations evaluated on a

WOTS+ secret key skWOTS+,i, namely the mapping

σXi

WOTS+,i
← H1(...(H1(skWOTS+,i))) ,

where the number of hash function invocations depends on the integer
representation of the block of length w. Input and output bitlength of the
hash function are n bits each.

Forgery. Follow the procedure in Figure 6.1, where in Step 3 the WOTS+

signature for the ith block is computed as

σXWOTS+ = H1(...H1(vkWOTS+.sd,ADRS, skWOTS+,i)) , (6.5)

where the hash chain has been iterated
(︁
Xi

)︁
w
times, with Xi the ith mes-

sage block. This step needs to be repeated multiple times (see Step 3a of
Section 6.2) to find a randomness R̂ mapping to address ˆADRS that maps to
the same WOTS+ instance as ADRS. We will analyze the cost of this later.

During a verification, the WOTS+ public key is computed by completing
the w−

(︁
Xi

)︁
w
iterations of the hash chain, and hashing all public key blocks,

i. e.,
vkWOTS+ ← Hl(vkWOTS+,1, vkWOTS+,2, ..., vkWOTS+,l) .

l is the number of blocks and each vkWOTS+,i is computed similar to Equation
(6.5). To forge a signature, one can compute a second preimage for the
WOTS+ public key on one of public keys vkWOTS+,i.

vkWOTS+ ← Hl(H1(...H1(vkSPHINCS+ .sd, ˆADRS, σ̂WOTS+,i)), vkWOTS+,2, vkWOTS+,l) .

The resulting QAA uses σWOTS+,i ∈ {0, 1}n as the input search space,
performing Step 4 in Section 6.2. The forged signature is

σ̂MSPHINCS+ = (R̂, σ̂
vkFORS
HT , σMFORS) .

Figure 6.5 shows the placement of the attack in the SPHINCS+ framework,
and Figure 6.6 the forgery on the WOTS+ signature.

Cost. The input to the hash function, i. e., skWOTS+,i is itself an image of a
hash function computation. That means, the value cannot be chosen freely
during signature generation, but depends on the forgery message md. As
such, for a universal forgery, there is no control over the number of chained
hash function invocations.

In [Hül+20, Table 3], the block-size is defined as w = 16, such that the
number of hash function invocations is in the interval [1, 15]. If H1 acts like
a random function, then one can compute the expected number3 Xw of hash
function invocations, i. e.,

E[X16] =

15∑︂
i=1

i · 1
15

= 8

Consequently, a forgery attack with a second preimage search can be imple-
mented with oracle depth 1 ≤ #H ≤ 15, with an expected value of 8 for an
undetermined message.

universal signature forgeries in sphincs+ 95

Hmsg(R̂, vkSPHINCS+ .sd, vkSPHINCS+ .root,M)

σ̂MSPHINCS+ = (R̂, σ̂vkFORS
HT , σmd

FORS,)

extract

σ̂XMSS,1 = (σ̂
rXMSS,2
WOTS+,1,Auth1)

vkSPHINCS+

vkWOTS+,1

XMSS tree 1

vkFORS

rFORS,1 rFORS,k

M

md

Figure 6.5: Simplified SPHINCS+ scheme with the target for the seconds preimage
attack for the universal forgery for message M̂ in the dashed red box. The dotted
blue box marks the fresh signature σ.

v0 v1 v̂(Mi)w
vw−2 vw−1

H1 · · ·
H1 · · ·

H1 H

skWOTS+,i σ̂(Mi)w vkWOTS+,i

Figure 6.6: Simplified SPHINCS+ scheme with the attacked part for the universal
forgery for message M̂ in the dashed red box.

[Hül+20] Hülsing et al., SPHINCS+-
Submission to the 3rd round of the NIST post-
quantum project

Once again, when creating a SPHINCS+ signature, we can choose the
FORS address which will give us some WOTS+ instance, and we have to pick
the correct address to match the genuine WOTS+ instance of σ. To forge
a WOTS+ instance on the first layer of the hypertree, consider only layer
1 with 2h

′
= 2h/d WOTS+ instances. The probability that a random FORS

instance uses the correct WOTS+ instance is 2−h/d, i. e., costADRS = 2−h/d.
For [Hül+20, Table 3], this cost is costADRS ≥ 2−9 for all parameter choices.

Success Probability. When attacking the WOTS+ component the input
and output space of the second-preimage search have the same dimension,
thus we can apply Lemma 2 to find a preimage with success probability
1− ppreimage ≥ 0.63 as in Lemma 2.

Corollary 4 (WOTS+Forgery). There exists an algorithm that computes a
universal signature forgery with probability at least 1− ppreimage ≥ 0.63, and
costADRS ≤ 2−9, that requires to compute a second preimage of the hash function
H1 with quantum oracle depth at most 1 ≤ #H ≤ 15.

6.2.4 Universal Forgery from a XMSS Authentication Path

Recall the XMSS signature as described in Section 4.2.2. A signature
σ
rXMSSi+1

XMSS,i = (σ
rXMSS,i+1

WOTS+,i,j ,AuthXMSS,i) consists of a WOTS+ signature of the
root of the previous XMSS tree and an authentication path within the XMSS
tree. While we already covered the possibility of forging a WOTS+ signature,
we review the possibility of attacking the XMSS authentication path. In
such an authentication path, each node consists of the hash of its parents.

universal signature forgeries in sphincs+ 96

The root node, which is the SPHINCS+ public key for the topmost tree, is
the hash of a node that descended from a WOTS public key (and from the
signed message and randomness), and from another node, which can be
freely chosen. Particularly, input and output bitlength of the hash function
are n bits each.

Forgery. Following the steps in Figure 6.1, where in the third step the
XMSS signature of layer 1 is

σ
rXMSS,1
XMSS = σ

rXMSS,2

WOTS+,1
,AuthXMSS,1 ,

During verification, the XMSS root is computed as

vkSPHINCS+ .root← H2(vkSPHINCS+ .sd,ADRS, p1, p2) ,

where p1, p2 are the parents of the root node.
To forge a signature, one can compute a second preimage for the root

public key on one of the authentication paths,

vkSPHINCS+ .root← H2(vkSPHINCS+ .sd,ADRS, p̂1, p2) .

One of the two parents, w.l.g. say p2, is determined by the honest and fake
signature instance, and can not bemanipulated in order to provide a universal
forgery. The preimage can be retrieved running QAA with p̂1 ∈ {0, 1}n as the
input search space, performing Step 4 of Figure 6.1. The forged signature in
Section 6.2 is then

σ̂MXMSS,1 = (R, σ̂vkFORS
HT , σMFORS) .

Figure 6.7 shows the placement of the attack in the SPHINCS+ framework,
and Figure 6.8 in the XMSS tree.

Hmsg(R, vkSPHINCS+ .seed, vkSPHINCS+ .root,M)

σ̂MSPHINCS+ = (fakeR, σ̂vkFORS
HT , σmd

FORS,)

extract

σ̂XMSS,1 = (σ
rXMSS,2
WOTS+,1,

ˆAuth1)

vkSPHINCS+

vkWOTS+,1

XMSS tree 1

vkFORS

rFORS,1 rFORS,k

M

md

Figure 6.7: Simplified SPHINCS+ scheme with the target for the second preimage
attack for the universal forgery for message m in the dashed red box. The dotted
blue box marks the fresh signature σ̂.

Cost. Since the input value, i. e., the sibling node, has the same bit-length
as the output, i. e., the public key, the probability of finding a preimage is
equal to Lemma 2. Also, since the public key is the direct hash of the two
parents, the depth of the oracle for an arbitrary message is always #H = 1.

No address computation is required, as both the WOTS+ and FORS in-
stances checked during verification are generated from the freshly generated
public-key pair.

universal signature forgeries in sphincs+ 97

σ̂vkFORSHT =
(︁
σ
rXMSS,2
WOTS+,1

, ˆAuthXMSS,1

σ
rXMSS,3
WOTS+,2

,AuthXMSS,2

...

σvkFORS
WOTS+,d

,AuthXMSS,d
)︁

vkSPHINCS+

XMSS tree 1

vkWOTS+,1

p̂1p2

Figure 6.8: Simplified SPHINCS+ scheme with the attacked part for the universal
forgery for message M̂ in the dashed red box and the fake signature in the dotted
blue box.

Success Probability. When attacking the XMSS component the input and
output space of the second-preimage search have the same dimension, thus
we can apply Lemma 2 to find a preimage with probability 1−ppreimage ≥ 0.63

as in Lemma 2.

Corollary 5 (XMSS Forgery). There exists an algorithm that computes a
universal signature forgery with probability at least 1− ppreimage ≥ 0.63, and
costADRS = 1, that requires to compute a second preimage of the hash function
H with quantum oracle depth at most #H = 1.

6.2.5 Comparison of Attack Strategies

When comparing the four possible places to attack the SPHINCS+ scheme as
in Table 6.3, one can see that a second preimage provides a for a universal
forgery for each one of the individual components. However, only for the
XMSS and the message digest the forgery can be implemented with an oracle
depth of one, i. e., the oracle for QAA consists of a single iteration of the
keyed hash function. Further, the success probability is maximal for the
XMSS component.

As such, we consider this the cheapest attack relative to the QAA oracle.
In the remainder of this chapter, we will focus on estimating the cost for this
individual attack strategy.

quantum circuit gate cost 98

Table 6.3: Overview of resources in the Application layer to forge a universal signature
in SPHINCS+.

Target Component #H 1− ppreimage costADRS

H(M,R, ...) Message Digest 1 ≥ 2−88 0

σmd
FORS FORS 2 ≥ 0.63 ≥ 2−68

σvkFORS
HT WOTS+ 1 ≤ i ≤ 15 ≥ 0.63 ≥ 2−9

AuthXMSS XMSS Path 1 ≥ 0.63 0

[BT21a] Berger and Tiepelt, “On Forging
SPHINCS+-Haraka Signatures on a Fault-
Tolerant Quantum Computer”

6.3 quantum circuit gate cost

We report estimation results on the logical layer by implementing the mem-
bership oracle of the second preimage attack for Grover’s algorithm in Q#.
The oracle corresponds to the procedure to attack the XMSS component,
since this results in the Grover oracle with the fewest number of consecutive
hash function evaluations, and thus the cheapest oracle. The Q# implemen-
tation implementation includes SHAKE-256 and Haraka, both of which are
used to instantiate the hash function in SPHINCS+. A detailed description
can be found in [BT21a, Sec. 3]. We report the cost of:

• The Haraka and SHAKE-256 function in Q# in Table 6.4.

• The membership oracle using the quantum circuits for Haraka and
SHAKE-256 in Table 6.5.

Table 6.4: Resource requirements for a Grover oracle for a preimage attack on
SHAKE-256 and the Haraka-based sponge hash function with different input and
output lengths [BT21a, Table 3].

Hash function λ GT GCNOT GClifford T-Depth Qlogical

Haraka 128 1.16 · 220 1.32 · 221 1.45 · 218 1.06 · 217 1.37 · 210

SHAKE-256 128 1.13 · 220 1.21 · 222 1.29 · 218 1.78 · 211 1.69 · 211

Haraka 256 1.16 · 221 1.32 · 221 1.45 · 219 1.06 · 218 1.62 · 210

SHAKE-256 256 1.13 · 220 1.21 · 222 1.29 · 218 1.17 · 212 1.81 · 211

Grover Diffusion

128 1.73 · 210 1.24 · 211 210 1.11 · 210 –
256 1.74 · 211 1.24 · 212 211 1.12 · 211 –

Next, we consider the cost to implement Grover’s search algorithm. With
the number of Grover iterations as ⌊π4 2

λ/2⌋, a second preimage attack on
a hash function with search space {0, 1}λ for λ = 128 requires 1.57 · 263

iterations, for λ = 256 one requires 1.57 · 2127 iterations.
Table 6.6 shows the estimation for the cost of a preimage attack on Haraka

and SHAKE-256, which are the entries of Table 6.5 scaled with the number
of Grover iterations. The logical cost will used as a baseline in the following
Section 6.4 to estimate the fault-tolerant cost to mount an attack.

https://github.com/RobinBerger/Grover-Sphincs
https://github.com/RobinBerger/Grover-Sphincs

fault-tolerant resource estimation 99

Table 6.5: Gate count for our implementation of the Grover components in one Grover
iteration.

SPHINCS+* GT GCNOT GClifford T-Depth Qlogical

*-128-Haraka 1.2 · 221 1.3 · 222 1.4 · 219 1.1 · 218 1.4 · 210

*-128-SHAKE-256 1.1 · 220 1.2 · 222 1.3 · 218 1.8 · 211 1.7 · 211

*-256-Haraka 1.2 · 221 1.3 · 222 1.4 · 219 1.1 · 218 1.6 · 210

*-256-SHAKE-256 1.7 · 220 1.2 · 222 1.3 · 218 1.2 · 212 1.8 · 211

Grover Diffusion

128 bit 1.7 · 210 1.2 · 211 210 1.1 · 210 –
256 bit 1.7 · 211 1.2 · 212 210 1.1 · 211 –

Table 6.6: Resource estimate for a preimage search to forge an XMSS signature from
[BT21a, Table 4], i. e., Table 6.5 scales with the number of Grover iterations. The
number of qubits, Qlogical, is consistent for all Grover iterations (cf. Table 6.5).

SPHINCS+* GCost GT GCNOT GClifford T-Depth

*-128-Haraka 1.68 · 286 1.89 · 284 1.02 · 286 1.10 · 283 1.73 · 281

*-128-SHAKE-256 1.20 · 286 1.73 · 283 1.88 · 285 1.02 · 282 1.84 · 275

*-256-Haraka 1.69 · 2151 1.89 · 2149 1.02 · 2151 1.11 · 2151 1.74 · 2145

*-256-SHAKE-256 1.34 · 2151 1.89 · 2149 1.88 · 2150 1.04 · 2147 1.37 · 2141

[Amy+16] Amy et al., “Estimating the Cost
of Generic Quantum Pre-image Attacks on
SHA-2 and SHA-3”

6.4 fault-tolerant resource estimation

In this section, we give cost estimates of carrying out themost promising attack
on SPHINCS+ signatures on the quantum error correction layer. We consider
the fault-tolerant resources required to mount the attack, specifically, to run
the Grover algorithm with the resources reported in Section 6.3 on a physical
quantum computer. In particular, we analyze the resource requirements
for the SPHINCS+-128 parameter sets, i. e., Haraka and SHAKE-256 hash
function. The analysis follows the approach in [Amy+16], where we optimize
the parallelization for the magic state distillation.

6.4.1 Cost Estimation using Haraka

We follow the procedure from Section 6.1.3 to calculate the dominant number
of surface code cycles to embed the CNOT and Clifford gates, or to produce
magic states. From Section 6.3, the counts in question are the number
of T gates GT

Haraka = 1.89 · 284, the number of CNOT and Clifford gates
GCNOT

Haraka = 1.02 · 286, GC
Haraka = 1.1 · 283, the T-Depth GT-depth

Haraka = 1.73 · 281

and the number of qubits Qlogical
Haraka = 1.1 · 210.

Surface Code for CNOT and Clifford Gates. We first consider the
surface code as outlined in Section 3.3.3: The target output error probability
is poutG = 1/

(︁
GCNOT

Haraka + GC
Haraka

)︁
. With pinG = 10−5, the smallest surface code

distance that fulfills this is d = 16. Accordingly, the number of surface code
cycles are #SCCG,Haraka = 16

Each of the Qlogical
Haraka logical qubits requires 578 physical qubits. In total,

the algorithm requires Qphysical
Haraka ≈ 1.853 · 219 physical qubits.

fault-tolerant resource estimation 100

[Amy+16] Amy et al., “Estimating the Cost
of Generic Quantum Pre-image Attacks on
SHA-2 and SHA-3”

[FDJ13] Fowler, Devitt, and Jones, “Surface
code implementation of block code state dis-
tillation”

Magic State Distillation. Next, we consider the cost of the magic state
distillation as in Section 3.3.3. Given the desired output error rate relative
to the size of the circuit

poutMSD = 1/GT-depth
Haraka ,

and the Assumption 3.3.3 given in Section 3.3.3 one can determine the
number of layers of magic distillation required.

We use the algorithms [Amy+16, Alg. 4] and [FDJ13, Sec. 2], which take
as inputs the assumptions on physical error gate rate (cf. Assumption 3.3.1)
and assumptions on the surface code (cf. Assumption 3.3.3), as well as the
logical cost (reported in Section 6.3), and outputs the number of distillation
layers, the surface code distance di for each layer, as well as the number
of magic states produced in each distillery. Our implementation of the
algorithms can be used to reproduce the numbers.

As a result, two layers of distillation are required, the first with a distance
of d1 = 19, the second with a distance of d2 = 9, where i = 1 is the top
layer, i. e., that outputs the final states. Table 6.7 shows the parameters
and the used qubits. Each distillery produces 4 magic states, and requires
Qlog

MD, Haraka = 240 logical qubits and #SCCMSD
Haraka = 460 surface code cycles.

We review the individual layers of T gates. On each layer, an average of

GT
Haraka

GT-depth
Haraka

≤ 9 ,

T-gates are applied. Therefore, we need about three distilleries to produce a
sufficient amount of magic states in each layer.

The bottom layer, i = 2 uses more qubits than the top layer, but runs in
fewer cycles, we propose to parallelize all three distilleries, computing the
bottom layers consecutively, allowing to compute all top layers in parallel at
the same time on the qubits used for the bottom layer as in Figure 6.9. In total,
the number of logical qubits for the parallelized distillery is Qlog

MD, Haraka = 240.

Table 6.7: Magic state distillation scheme for attacking SPHINCS+-128. Distance of
the error correcting code di and number of logical and physical qubits for each layer
i.

Layer i di Qlog
i Qphy

i

Top 1 19 16 1.56 · 213

Bottom 2 9 240 1.46 · 215

Results. We determine the dominant number of surface code cycles: The
average number of gates per layer of T-depth for each CNOT

GCNOT
Haraka

Qlogical
Haraka · G

T-depth
Haraka

·#SCCG,Haraka ≈ 0.0143 · 16 = 2.288 ,

and each Clifford gate

GC
Haraka

Qlogical
Haraka · G

T-depth
Haraka

·#SCCG,Haraka ≈ 0.002 · 16 = 0.32 ,

is significantly smaller than the number of surface code cycles required to
implement a single layer required for magic state distillation.

https://github.com/RobinBerger/Grover-Sphincs

fault-tolerant resource estimation 101

90 4.8·104

90 4.8·104

90 4.8·104

190

1.28·104
190

1.28·104
190

1.28·104
460.0
cycles

4.8·104 qubits

Top layer

Bottom layer

Figure 6.9: Magic state distillation scheme for attacking SPHINCS+-128. Pipelining
the production of 3 magic states allows to reuse the qubits from the bottom layer in
the top layer.

[Amy+16] Amy et al., “Estimating the Cost
of Generic Quantum Pre-image Attacks on
SHA-2 and SHA-3”

[FDJ13] Fowler, Devitt, and Jones, “Surface
code implementation of block code state dis-
tillation”

Therefore, the total number of surface code cycles for the entire algorithm
is dominated by the magic state distilleries, which is

#SCC = 460 · GT-depth
Haraka ≈ 1.5 · 290 .

This results in the total cost of the attack (according to Equation (6.1)) of

LQCHaraka(SPR-Attack) ≈ 1.54 · 2101 .

6.4.2 Cost Estimation using SHAKE-256

We repeat the procedure from Section 6.1.3 to calculate the dominant number
of surface code cycles when instantiating the hash function with SHAKE-256.
Following Section 6.3, the number of T-gates are GT

SHAKE-256 = 1.2 · 286, the
number of CNOT and Clifford gates are GCNOT

SHAKE-256 = 1.88 · 286, GC
SHAKE-256 =

1.88 · 285, the T-Depth is GT-depth
SHAKE-256 = 1.84 · 275 and the number of logical

qubits are Qlogical
SHAKE-256 = 1.1 · 210.

Surface Code for CNOT and Clifford Gates. The surface code’s output
error probability is poutG = 1/

(︁
GCNOT

SHAKE-256 + GC
SHAKE-256

)︁
. With pinG = 10−5,

the smallest surface code distance that fulfills this is d = 25; the number of
surface code cycles is #SCCG,SHAKE-256 = 25.

Consequently, each of the Qlogical
SHAKE-256 logical qubits requires 1953 physical

qubits with a total of Qphysical
SHAKE-256 ≈ 1.61 · 222 qubits.

Magic State Distillation. With the algorithms [Amy+16, Alg. 4] and
[FDJ13, Sec. 2] we get the same number of layers and thus the values
for magic state distillation are reminiscent to those of Section 6.4.1, in
particular, of Table 6.7. Qlogical

MSD, SHAKE-256 = 240. #SCCMSD
SHAKE-256 = 460 surface

code cycles. Reviewing the individual layers of T gates shows that on each
layer an average of

GT
SHAKE-256

GT-depth
SHAKE-256

≤ 249 ,

T-gates are applied. Therefore, we need about 83 distilleries to produce a
sufficient amount of magic states in each layer.

fault-tolerant resource estimation 102

[Ber+11] Bertoni et al., Cryptographic
sponge functions

[Amy+16] Amy et al., “Estimating the Cost
of Generic Quantum Pre-image Attacks on
SHA-2 and SHA-3”

[CNS17] Chailloux, Naya-Plasencia, and
Schrottenloher, “An Efficient Quantum Colli-
sion Search Algorithm and Implications on
Symmetric Cryptography”

Results. Comparing the dominant number of surface code cycles, i. e., for
CNOT gates

GCNOT
SHAKE-256

Qlogical
SHAKE-256 · G

T-depth
SHAKE-256

·#SCCG,SHAKE-256 ≈ 0.31 · 25 = 7.75 ,

and Clifford gates

GC
SHAKE-256

Qlogical
SHAKE-256 · G

T-depth
SHAKE-256

·#SCCG,SHAKE-256 ≈ 0.021 · 25 = 0.525 ,

shows that both are smaller than the number of surface code cycles for magic
state distillation.

The total number of surface code cycles from magic state distilleries is

#SCC =≈ 1.6 · 284 .

The total number of logical qubits required is 1.33 · 214. The total cost of
running the attack is (cf. Equation (6.1))

LQCSHAKE-256(SPR-Attack) ≈ 1.17 · 299 .

6.4.3 Comparing Costs

We compare the logical-qubit-cycles to the number of classical hash function
invocations from [Ber+11] required to perform the same attack, since we
consider that the former corresponds to the latter as in [Amy+16, As. 4 and
Cost Metric 1]. Table 6.8 suggest that the number of logical-qubit-cycles
required to implement the proposed universal forgery (cf. Section 6.2) are
fewer than the number of classical invocations of the Haraka hash function.
Wewant to highlight that this only affects the Haraka hash functions, and only
SPHINCS+-128, and holds conditional on the assumptions on the quantum
computing technology made.

Otherwise, we compare the number of logical-qubit-cycles to the number
of Grover iterations and number of qubits required for generic attacks as
reported by [CNS17, Sec. 1.1], neglecting the exponential classical memory
cost. We consider the “time-space” product, i. e., the number of Grover itera-
tions multiplied with the number of logical qubits. This time-space product
considers resources required on a logical layer, while the logical-qubit-cycles
considers resources on the fault-tolerant layer. We chose this comparison,
because we are not aware if any previous work on quantifying the cost of a
universal forgery with the Haraka hash function, and both metrics consider
time and space resources in the quantum setting. A comparison of all results,
for both SHAKE-256 and Haraka, with additional information can be found
in Table 6.8.

A generic collision attack from [CNS17] attacks the internal state of
the hash function and requires Õ(22n/5) Grover iterations, O(n) qubits and
Õ(2n/5) classical memory, where n = 256 is the size of the internal state.
Similarly, a generic preimage attack [CNS17] requires Õ(23n/7) Grover
iterations, O(n) qubits and Õ(2n/7) classical memory. The comparison in
Table 6.8 shows that the fault-tolerant cost may even be lower than the logical
cost of a generic attack for the Haraka hash function. This is surprising,

fault-tolerant resource estimation 103

since the latter does not consider the additional cost incurred through error
correction. However, this may be a result from the fact that our attacks target
a search space relative to the security parameter rather than to the internal
state of the hash function.

Table 6.8: Fault-tolerant cost for our XMSS-attack from Section 6.2.4 using the
SHAKE-256 and Haraka hash functions. The number of Grover iterations and time-
space product of the generic collision and second preimage attack refers to cost of
[CNS17], where n = 256 corresponds the size of internal state of Haraka, which is
relevant for the generic attack. The rows of our primary comparison are highlighted.

SHAKE-256 Haraka

SPHINCS+-128 #Classical hash function invocations − 2129.5

Our Attack on
SPHINCS+-128

#Distilleries φ 83× 3 3× 3

#Log. Qubits Qlog 1.33 · 214 1.03 · 211

#Total Phys. Qubits Qphy 1.03 · 223 1.94 · 220

#Total ECC cycles #SCC 1.6 · 284 1.5 · 290

logical-qubit-cycles LQC 1.17 · 299 1.55 · 2101

Our Attack on
SPHINCS+-256

#Distilleries φ 42× 4 9× 1

#Log. Qubits Qlog 1.3 · 217 1.16 · 215

#Total Phys. Qubits Qphy 1.73 · 225 1.79 · 223

#Total ECC cycles #SCC 1.02 · 2152 3.95 · 2154

logical-qubit-cycles LQC 1.31 · 2169 1.44 · 2171

Comparison with logical resources of generic attacks

Collision Attack
on SPHINCS+-128

#Grover Iterations − 1.32 · 2102

time-space product − 1.31 · 2110

Preimage Attack
on SPHINCS+-128

#Grover Iterations − 1.64 · 2109

time-space product − 1.64 · 2117

Remark 9. Following Assumption 3.3.1 each surface code cycles requires 200ns.
This suggests that running all cycles corresponding to the preimage search for
Haraka would require 1.17 · 1013 years. The same algorithm for SHAKE-256
would run for 2.02 · 1011 years.

Parts of this chapter are taken verbatim from
our publications [Bin+24; Bin+23].

[Reg05] Regev, “On lattices, learning with
errors, random linear codes, and cryptogra-
phy”

[Reg09] Regev, “On lattices, learning with
errors, random linear codes, and cryptogra-
phy”

[Sch+22] Schwabe et al., CRYSTALS-KYBER

[SE94] Schnorr and Euchner, “Lattice Basis
Reduction: Improved Practical Algorithms
and Solving Subset Sum Problems”

[LN20] Li and Nguyen, A Complete Analysis
of the BKZ Lattice Reduction Algorithm

[Alb+21] Albrecht et al., “Lattice Reduc-
tion with Approximate Enumeration Oracles
- Practical Algorithms and Concrete Perfor-
mance”

[APS15b] Albrecht, Player, and Scott, “On
the concrete hardness of Learning with Er-
rors”

[Sch+17] Schanck et al., NTRU-HRSS-KEM

[ANS18] Aono, Nguyen, and Shen, “Quan-
tum Lattice Enumeration and Tweaking Dis-
crete Pruning”

[Mon18] Montanaro, “Quantum-Walk
Speedup of Backtracking Algorithms”

[AK17] Ambainis and Kokainis, “Quantum
algorithm for tree size estimation, with appli-
cations to backtracking and 2-player games”

7
The Cost of Quantum Lattice Enumeration

Cryptographic constructions based on the hardness of computational prob-
lems over algebraic lattices have achieved significant popularity in recent
years. Part of the reason for this popularity is the conjectured security of
protocols built on them against quantum adversaries, due to the apparent
resistance of lattice problems against quantum attacks.

LWE [Reg05; Reg09] is a popular hardness assumption for constructing
such post-quantum secure primitives, such as Kyber [Sch+22]. One of the
main approaches to solving LWE is via block lattice reduction algorithms, such
as BKZ [SE94; SE94]. After building a lattice embedding of dimension n of a
given LWE challenge, block reduction algorithms will call O(poly(n)) times
an SVP solver, such as lattice enumeration, in dimension β < n. This process
results in a better basis for the LWE lattice embedding that allows the attacker
to recover the LWE challenge secret. In our work, we consider modern
versions of BKZ using early-termination and approximate-SVP solvers, which
have been shown [LN20; Alb+21] to be effective while requiring to find a
“short enough” lattice vector, rather than the shortest. In order to go from a
LWE challenge to an embedding and a choice of BKZ block size β, we use
the lwe-estimator [APS15b].

The leading cost of block lattice reduction (and therefore, often, of the
attacks overall) comes from solving instances of the (approximate [LN20;
Alb+21]) shortest vector problem in high dimension. The leading choice for
(approximate) SVP solvers are lattice point enumeration [Kan83; FP85;
GNR10; CN11; ANS18; Alb+20a] and sieving [AKS01; NV08; Laa15;
Bec+16; Alb+19a] algorithms. Due to the central role these algorithms
play in the cryptanalysis of lattice-based constructions [LP11; Alk+16;
Alb+18] and because multiple post-quantum soon-to-be standards are lattice-
based [Sch+22; Lyu+22; Pre+22], clearly understanding their cost is cru-
cial.

Several quantum speedups on sieving have been proposed [LMv13;
Kir+19; CL21; Bon+23]. These algorithms improve upon their classical
counterparts using a quantum search or a quantum walk to speed up nearest
neighbour subroutines. They all require an exponential amount of memory.
Quantum speedups for enumeration have received significantly less atten-
tion. Hypothetical quadratic quantum speedups on enumeration were first
suggested in [Sch+17]. Aono, Nguyen, and Shen [ANS18] demonstrated
them by leveraging quantum backtracking techniques [Mon18; AK17] on the

105

the cost of quantum lattice enumeration 106

[Bai+23] Bai et al., “Concrete Analysis of
Quantum Lattice Enumeration”

[Pre18] Preskill, “Quantum Computing in
the NISQ era and beyond”

[Alb+20b] Albrecht et al., “Estimating Quan-
tum Speedups for Lattice Sieves”

[ANS18] Aono, Nguyen, and Shen, “Quan-
tum Lattice Enumeration and Tweaking Dis-
crete Pruning”

[GLM08] Giovannetti, Lloyd, and Maccone,
“Quantum Random Access Memory”

[Kup11] Kuperberg, Another subexponential-
time quantum algorithm for the dihedral hid-
den subgroup problem

[JR23] Jaques and Rattew, QRAM: A Survey
and Critique

[Nat17] National Institute for Standards and
Technology, Post-Quantum Cryptography Call
for Proposals

enumeration tree constructed internally as part of enumeration. Bai, van Hoof,
Johnson, Lange and Ngu [Bai+23] investigated concrete implementations
of the arithmetic quantum circuits required.

While applicability of these speedups appears clear in the unbounded-
depth logical-qubit model, where quantum computation achieves low error
rates for free and does not decoherence, our current understanding of quan-
tum computer engineering suggests that this model may be overly optimistic
for hypothetical real-world quantum adversaries [Pre18]. For example, Al-
brecht, Gheorghiu, Postletwaite and Schanck [Alb+20b] investigate the
impact of error correction on quantum lattice sieving, determining that
achieving even small speedups over classical sieving in the cryptanalytic
regime requires making several optimistic algorithmic and physical assump-
tions. We are currently not aware of any similar work on the validity of
quantum speedups on enumeration in similarly constrained models.

Objective & Contribution. In this paper, we set to investigate whether
quantum speedups on lattice enumeration [ANS18] apply to enumeration
with extreme cylinder pruning in the limited quantum depth setting. In
this setting, we assume the availability of error-corrected logical qubits and
QRACM [GLM08; Kup11; JR23]. However, we also assume a limit MaxDepth
to the depth that a quantum circuit can achieve, as computations with higher
depth than MaxDepth are assumed to decohere, returning noise.

This setting has been proposed by the NIST in their call for proposals for
post-quantum KEMs and digital signatures [Nat17, Sec. 4.A.5]. NIST pro-
poses different values for MaxDepth (namely, of 240, 264 and 296), capturing
different run-times and quantum computing technology, and proposes costs
for key-search attacks against block ciphers and collision-search attacks for
hash functions in this setting. As a case-study, we adopt the same MaxDepth
limitations, and investigate their effect on quantum enumeration with cylin-
der pruning against CRYSTALS-Kyber, the KEM selected for standardization
by NIST.

Since our initial results suggest that enumeration trees constructed when
attacking Kyber are mostly too large to be directly enumerated quantumly
when MaxDepth is considered, we propose a combined classical-quantum
enumeration algorithm that allows leveraging any available quantum compu-
tation capabilities, regardless of quantum depth budget limits. We provide a
detailed yet generous-to-the-adversary analysis of the runtime costs of this
combined attack in terms of quantum depth and number of gates under rea-
sonable heuristics that we support with experimental evidence. We identify
multiple known unknowns that affect the cost of the combined attack, and
provide lower bounds for each one where possible, and otherwise provide
experiment-backed heuristics. Finally, we use our analysis to estimate lower
bounds on the cost of performing the primal lattice attack on Kyber in various
settings, using our combined classical-quantum extreme cylinder pruning
enumeration.

Our results suggest that quantum cylinder pruning enumeration tech-
niques are unlikely to affect larger parameters sets for lattice-based schemes

estimating the cost of quantum enumeration 107

[Bin+23] Bindel et al., Quantum Lattice Enu-
meration in Limited Depth

when taking into consideration a MaxDepth constraint. While their ef-
fect on smaller parameters cannot be fully excluded, successful attacks are
contingent on various unknown quantities being favorable to the attacker.

As part of our analysis, we also develop some minor results concerning
the structure of lattice enumeration trees, which we report in the full version
of this paper [Bin+23] together with matching experiments, and that are of
independent interest. We have made the source code used to produce our
experimental results, tables, and plots publicly available.

Outline. In Section 7.1 we describe our lower bounds on the cost of com-
bined classical-quantum enumeration. In Section 7.3 we use our estimates
to investigate the cost of quantum enumeration as part of the primal lattice
attack on Kyber.

7.1 estimating the cost of quantum enumeration

In this section, we outline the components of our cost estimation of quan-
tum lattice enumeration via backtracking under a MaxDepth restriction.
We start by reviewing the gate-cost of Montanaro’s FindMV algorithm (cf.
Section 3.1.2) and the depth of the quantum walk QPE(W), since the lat-
ter will imply an upper bound to the size of the largest tree that can be
searched within a MaxDepth budget (cf. Section 3.4) for coherent quantum
computations. We then proceed to explore the cost of combining quantum
enumeration with classical one, to address settings where the trees are too
large for the limited quantum depth budget.

7.1.1 Quantum Backtracking to Find a Marked Vertex

We follow the proof of Theorem 2 from Section 3.1.2, aiming to provide
concrete lower bounds (rather than asymptotic upper bounds) to the cost
of the FindMV algorithm. The quantum backtracking framework laid out
in Section 3.1.2 performs a classical depth-first search on the backtrack-
ing tree, where each node is evaluated using multiple, individual quantum
walks to decide whether it spawns a subtree containing a marked node.
Each quantum walk has low success probability, and the results of all walks
are combined using a Chernoff bound to provide DetectMV with a tar-
geted success probability. An overview of Montanaro’s quantum algorithm is
sketched in Figure 7.1. Since the depth of a quantum circuit is the principal
limitation for our cost model (see Section 3.3.2) all calls to the quantum
circuit QPE(W) can be viewed independently, meaning their depth does not
accumulate towards the MaxDepth limit.

FindMV DetectMV QPE W := RARB

DF(T) times QD(T) times WQ(T ,W) times

Quantum circuit

Figure 7.1: Overview of Montanaro’s marked vertex (FindMV) finding backtrack-
ing algorithm [Mon18]. Only the QPE part of the algorithm needs to run within
MaxDepth.

https://github.com/mtiepelt/QuantumLatticeEnumeration

estimating the cost of quantum enumeration 108

[Bin+23] Bindel et al., Quantum Lattice Enu-
meration in Limited Depth

[Mon18] Montanaro, “Quantum-Walk
Speedup of Backtracking Algorithms”

[ANS18] Aono, Nguyen, and Shen, “Quan-
tum Lattice Enumeration and Tweaking Dis-
crete Pruning”

[Bin+23] Bindel et al., Quantum Lattice Enu-
meration in Limited Depth

Node Degree.

While Theorem 2 assumes the tree being enumerated having constant de-
gree, this is not the case for enumeration trees (of depth n) on general
lattices where the leaves are lattice vectors of norm at most R. Given a node
(⋆, . . . , ⋆, cn−k+1, . . . , cn) on level k of the tree, an upper bound Ck on its
degree corresponds to an upper bound on the number of possible values
cn−k ∈ Z such that (⋆, . . . , ⋆, cn−k, cn−k+1, . . . , cn) is in the backtracking
tree. An upper bound on the degree of the tree would then be C = maxk Ck.
For q-ary lattices as considered in our experiments in Section 7.3, a bound
could be Ck = q for all k. A better bound is given by [Bin+23, Lemma 1],
where we show Ck ≈ min(⌊2 ·Rk+1/

⃓⃓
|b∗n−k

⃓⃓
|⌉, q).

Any tree T of depth n and degree d can be transformed into a binary
tree such that the resulting tree T ′ has depth n′ ≤ n log d and at most
#T ≤ #T ′ ≤ 2 · #T nodes. Since we aim to provide a lower bound on
quantum enumeration via backtracking and the quantum cost depends on
the treesize, we do not consider a implicit transformation to a binary tree as
input for Theorem 2. We do, however, consider a classical binary search in
FindMV, since this is optimal in the classical case.

The result in [Mon18], however, also extends to trees with non-constant
degree, as [Mon18, Sec. 1] notes that this assumption was made to simplify
the complexity bounds. In particular, the assumption of a constant degree
allows to bound the asymptotic cost of operatorW and it simplifies the bound
the asymptotic number of repetitions of DetectMV and thus of QPE(W).

Procedures.

As outlined in Figure 7.1, the quantum algorithm that can identify marked
vertices in a tree, FindMV, will internally call DetectMV, which detects
whether a marked vertex exists in a tree at all. This, in turn, runs quantum
phase estimation QPE on the operator W . We may refer to QPE(W) as
quantum walk.

Each procedure calls the respective sub-procedure multiple times (with
the number of calls depending on the properties of the respective tree T),
resulting in total depth and gate cost for FindMV of

T-Depth(FindMV(T)) = WQ(T ,W) · T-Depth(W), (7.1)

GCost(FindMV(T)) = DF(T) · QD(T) ·WQ(T ,W) · GCost(W), (7.2)

where DF(·), QD(·), and WQ(·) are the number of calls to the subroutines
DetectMV in FindMV, QPE in DetectMV, andW in QPE, respectively. We
will analyze the number of these calls under the assumption that the search
tree is of depth n and degree bound by C, prioritizing strict lower bounds.

Number of Calls DF(·). Every call to FindMV (cf. Section 3.1.2) per-
forms a classical search upon input tree T , and outputs a single leaf on
level n. Aono, Nguyen and Shen [ANS18] analyze the number of calls to
DetectMV made when searching an enumeration tree without an asymptot-
ically constant degree. Their analysis performs an asymptotically convenient
implicit transformation of the tree into a binary tree [ANS18, Theorem
5], resulting in O(n log C) calls in the worst case, where we could take

estimating the cost of quantum enumeration 109

[Mon18] Montanaro, “Quantum-Walk
Speedup of Backtracking Algorithms”

[AA03] Aaronson and Ambainis, “Quantum
Search of Spatial Regions”

C = maxk{min(⌊2 ·Rk+1/
⃓⃓
|b∗n−k

⃓⃓
|⌉, q)} (cf. [Bin+23, App. C]). This bound

is likely tight on average when trees are guaranteed to contain a marked leaf.
However, as we will see in Section 7.1.3, a MaxDepth constraint results in
performing quantum walks on (sub-)trees without such a guarantee. Since
every lattice has a shortest vector, we assume that there exist at least one
marked leaf in the enumeration tree. However, not every subtree of the
enumeration tree will contain a marked leaf. For such subtrees, DetectMV
is only called once with the output “no marked node exists”. Since FindMV
requires a single call to DetectMV to identify that a tree has no marked
leafs, we lower bound DF(·) ≥ 1. The success probability of a call to FindMV
depends on that of DetectMV. In the following paragraph we lower bound
the cost of DetectMV with success probability 1, so that FindMV also has
full success probability.

Number of Calls QD(·). An upper bound on the quantum depth required
to run DetectMV can be established directly from [Mon18, Alg. 2] and
[Mon18, Lemma 2.4].

Corollary 6 (T-Depth of quantum circuit to detect a marked node). LetW
be a quantum operator of depth T-Depth(W) that acts on a backtracking tree
T in n (unassigned) variables. Let QPE(W) be the quantum circuit performing
phase estimation onW . For any failure probability δDMV ∈ (0, 1), there exists
a quantum algorithm DetectMV that decides with probability at least 1−δDMV

if a marked node exists in T by calling QPE ⌈ϵ log(1/δDMV)⌉ times, such that
T-Depth(QPE) ≤ 1/b

√
#T · n · T-Depth(W), for some value b > 0 depending

onW .

As mentioned in Section 3.1.2 and Corollary 6, each call to DetectMV
repeats the QPE a total of ⌈ϵ log(1/δDMV)⌉ times for some constant ϵ > 0. The
value of ϵ depends on the failure probability of the quantum phase estimation
QPE(W), and on the desired failure probability δDMV of DetectMV. The
failure probability of QPE(W) in turn depends on the number of applications
of the operatorW , relative to the tree-size #T, the dimension n of the lattice
and a constant b (cf. Corollary 6). It is important to note that there is a trade-
off between the number of repetitions of W in the QPE, and the number
of repetitions of the QPE. We do not consider any optimizations related to
this trade-off as they are implementation specific. Instead, since we are
determining lower bounds for the number of calls, with ϵ ≥ 0 we lower
bound QD(T) ≥ 1.

Remark 10 (On the tightness of Corollary 6.). In the black-box setting,
with query access to a predicate P , Ω(

√
#Tn) is a lower bound on the query-

complexity to detect a marked node in a tree with #T nodes and depth n,
cf. [AA03, Theorem 7], [Mon18, Sec 4]. As such [Mon18] notes that [Mon18,
Thm 1.1] and thus [Mon18, Lem 2.4] are optimal for δ = Ω(1). As a conse-
quence, Corollary 6 is a lower bound if b ∈ Ω(1), where in the black box setting
T-Depth(W) = Ω(1).

Number of Calls WQ(·). As used inside of DetectMV, QPE needs to
be run with precision b/

√
#T · n, for some constant b > 0, returning after

≈
√

#T · n/b evaluations ofW . Or put differently, asymptotically, Ω(
√

#Tn)

estimating the cost of quantum enumeration 110

[AA03] Aaronson and Ambainis, “Quantum
Search of Spatial Regions”

[Mon18] Montanaro, “Quantum-Walk
Speedup of Backtracking Algorithms”

[Bes05] Bessen, “Lower bound for quantum
phase estimation”

[ANS18] Aono, Nguyen, and Shen, “Quan-
tum Lattice Enumeration and Tweaking Dis-
crete Pruning”

is a lower bound on the query-complexity of detecting a marked node in a tree
with #T nodes and depth n [AA03, Theorem 7][Mon18, Sec 4]. Montanaro
also notes that Thm. 1.1 and thus Lem. 2.4 of [Mon18] are optimal for
δDMV ∈ Ω(1). As a consequence, Corollary 6 is an asymptotic lower bound if
b ∈ Ω(1), where in the black box setting T-Depth(W) ∈ Ω(1).

Finding the hidden constant for the phase estimation is more involved.
While explicit constants exist for phase estimation [Bes05], Montanaro’s
algorithm may not necessarily use the optimal majority voting scheme as
part of DetectMV. Notably, there is a trade-off between the number of
repetitions of W in the QPE, and the number of repetitions of the QPE
(cf. Section 7.1.2). Fewer repetitions of the first (reducing both T-Depth
and GCost) results in an increase of the number of repetitions of the QPE
(increasing only GCost). We do not consider optimizations related to this
trade-off. While we investigate a possible approximation to the constants in
Section 7.1.2, resulting in b ≤ 1/64, for the sake of a lower bound we settle
for the following conjecture for our estimations in Section 7.3, believing that
this should not cause overestimating significantly the runtime of the attack
given all the other strict lower bounds we adopt.

Conjecture 1. The query complexity WQ(T ,W) of quantum phase estimation
ofW (QPE(W)) is WQ(T ,W) ≥

√
#T · n.

7.1.2 Beyond Lower Bounds for DF, QD, WQ

The lower bounds on DF(T),QD(T) and WQ(T) result in a conservative cost
estimation at the cost of potentially underestimating the attack cost. In this
section, we discuss alternative lower bounds for the quantities representing
the number of calls of the FindMV and DetectMV (cf. Figure 7.1).

We perform a heuristic analysis of the hidden constants, estimating tighter
bounds for these quantities. Indeed, we show that the number of calls to
DetectMV is likely DF(T) ∈ {1, n log C} depending on the subtree being
searched. Then a sufficient number of calls to the QPE in DetectMV could
be QD(T) = ⌈ϵ · log(n log(C))⌉ with ϵ = 20, and a sufficient number of calls
toW during QPE is WQ(T) ≈ 64

√
#Tn , adopting a constant b ≥ 1/64.

While our estimations seem realistic, and support Conjecture 1, for the
sake of keeping our analysis as conservative as possible, we will keep using the
strict lower bounds above during attack cost estimation in Sec. 7.1.4 and 7.3.
Analogue results to those in Section 7.3 using the less strict estimates can be
found in Section 7.3.2.

A more Conservative Bound on DF(T). As mentioned in Section 7.1.1,
the analysis in [ANS18] assumes an implicit transformation of T into a binary
tree of depth h log C. DetectMV is then called on the root level, in order to
detect whether marked vertices are in the tree. A binary search as assumed
by Aono, Nguyen and Shen [ANS18] can be implemented by recursively
dividing the search space into smaller subsets, i. e., considering the subsets
{1, 2, ..., ⌊(C − 1)/2⌋} and {⌈C/2⌉, ..., C}, of which each “half” is divided
again, to reduce the search space of the child nodes. Accordingly, the search
space of the child nodes is reduced. The transformed tree T ′ with binary
degree has n′ = n⌈log C⌉ levels and at most #T ′ ≤ 2 · #T nodes. Then

estimating the cost of quantum enumeration 111

1Specifically, it approaches e−1 as δDMV →
0.

[Mon18] Montanaro, “Quantum-Walk
Speedup of Backtracking Algorithms”

finding a marked leaf requires to run through at least n′ (i. e., if on each
branching of the binary search the branch corresponding to the marked leaf
is searched first) and at most 2n′ nodes in the binary search (i. e., if on each
branching of the binary search the branch corresponding to the marked node
is searched second), where on each branching DetectMV decides if the
branch is pruned or not, i. e.,

n⌊log C⌋ ≤ DF(T) ≤ 2n⌈log C⌉.

However, this would only be required for the subtree that contains the
marked vertex. If no marked vertices are found, no more calls are required,
and DF(T) = 1. If there are, further calls are made to identify the path from
the root to the marked leaf, akin to the binary search. In total, in order to
identify one marked leaf in T (or return error),

DF(T) =

⎧⎨⎩1, if T contains no marked leaves,

h log C, if T contains at least one marked leaf.

This discussion implicitly assumes the correctness of DetectMV, which
however can return incorrect results, increasing the complexity of an es-
timation on DF. One option would be running DetectMV multiple times
per level, with the amount of repetition depending on analysis of the spe-
cific DetectMV implementation, as well as the noise model of the quantum
computer.

A simpler analysis would be to estimate the failure probability of FindMV
when calling DetectMV once per level, assuming a tight failure probability
upper bound for DetectMV(T) of δDMV. Then, the success probability of
FindMV would be about (1− δDMV)

DF(T), which is O(1) if δDMV ≈ 1/DF(T)1.
Since a priori we do not know whether T contains a marked vertex, this
would mean implementing DetectMV such that δDMV ≈ (h log C)−1, to
account for the in-principle h log C successful calls required to detect the
marked vertex in its subtree. We proceed to do this next.

A more Conservative Bound on QD(T). The way DetectMV [Mon18,
Alg. 2] is computed is by performing multiple times, say K, QPE on theW
operator.

Let Xi be a random variable valued 1 when the ith call to QPE(W)

returned an eigenvalue 1, and valued 0 otherwise, and let YK =
∑︁

i∈[K]Xi.
The Xi are then independent and identically distributed Bernoulli random
variables. Let MV denote the event that a marked vertex is contained
in T and MV the opposite event. The core idea around DetectMV is
that whenever a marked vertex exists, QPE(W) will tend to return 1, and
0 otherwise. Indeed, from [Mon18, Proof of Lemma 2.4] we have that
p1 := Pr[Xi = 1 |MV] ≤ 1/4 and p2 := Pr[Xi = 0 |MV] ≤ 1/2. In order
to decide whether a tree contains a marked vertex, we run K instances of
QPE onW , and then check whether enough instances returned 1. Namely,
for some fixed α ∈ (0, 1] to be determined, we return “marked vertex exists”
if and only if YK ≥ αK.

As seen in the previous paragraph on DF(T), we may want to fix a
target failure probability δDMV for DetectMV, which can be achieved by

estimating the cost of quantum enumeration 112

2In particular, our value of α is quite close
to the 3/8 = 0.375 proposed in [Mon18].
This latter value would however imply ε =
22.

[CKM19] Campbell, Khurana, and Monta-
naro, “Applying quantum algorithms to con-
straint satisfaction problems”

[ANS18] Aono, Nguyen, and Shen, “Quan-
tum Lattice Enumeration and Tweaking Dis-
crete Pruning”

[APS15b] Albrecht, Player, and Scott, “On
the concrete hardness of Learning with Er-
rors”

[SE94] Schnorr and Euchner, “Lattice Basis
Reduction: Improved Practical Algorithms
and Solving Subset Sum Problems”

[Sch+22] Schwabe et al., CRYSTALS-KYBER

picking K high enough. We start assuming we have found α, and use
Chernoff bounds to estimate upper bounds on the “false positive/negative”
probabilities Pr[Y ≥ αK |MV] and Pr[Y ≤ αK |MV].

By direct computation of the bound, recalling that theXi are independent
and identically distributed, we have

Pr[YK ≥ αK |MV] ≤ exp(−tαK)E [exp(tYK)]

= exp(−tαK)E

[︄
K∏︂
i=1

exp(tXi)

]︄
= exp(−tαK)E [(exp(tX1))]

K

=

(︃
1 + p1(exp(t)− 1)

exp(αt)

)︃K

,

for any t > 0. For Pr[YK ≤ αK] a similar computation on the left tail gives

Pr[YK ≤ αK |MV] ≤
(︃
exp(t) + p2(1− exp(t))

exp(αt)

)︃K

, for any t < 0.

We then identify values of α and ε such that

inf
y>0

(︃
1 + p1(exp(t)− 1)

exp(αt)

)︃ε

≤ 1/2 (7.3)

and

inf
y<0

(︃
exp(t) + p2(1− exp(t))

exp(αt)

)︃ε

≤ 1/2 . (7.4)

From a numerical search, and picking the smallest possible ε returned, we
observe a valid pair at α = 0.369017 and ε = 20.2 Finally, we compute

Pr[YK ≥ αK |MV] ≤ inf
y>0

(︃
1 + p1(exp(t)− 1)

exp(αt)

)︃K

≤ (1/2)K/ε,

and similarly for Pr[YK ≤ αK | MV], suggesting that to get an overall
failure probability of at most δDMV, one should choose K/ε ≥ log(1/δDMV).
Therefore, it should be sufficient to choose

QD(T) = K = ⌈20 log(h log C)⌉ ≥ ε log(1/δDMV).

A more Conservative Bound on WQ(·). LetMV denote the event that no
marked vertex is contained in the tree T . An approximation for the constants
in QPE was analyzed by [CKM19, Sec 4.1], who showed that the probability
p1 := Pr[Xi = 1 |MV] that the QPE outputs one even if no marked vertex
exists is bounded by p1 ≤ 2

√
b(1 + o(1)). In our case, setting p1 as low as

possible leads to p1 ≤ 1/4, which implies using at least b ≥ 1/64. Since we
evaluateW about

√
#T · n/b times and 1/b ≤ 64, it follows

WQ(T ,W) ≈ 64
√︁

#T · n .

Depth of QPE(W).

We turn back to the lower bounds estimated in Section 7.1.1. With Conjec-
ture 1 in hand, we can attempt to estimate the depth budget required to break
practical lattice-based schemes using quantum enumeration as proposed by

estimating the cost of quantum enumeration 113

[Aon+18] Aono et al., “Lower Bounds on
Lattice Enumeration with Extreme Pruning”

[DS10] Dagdelen and Schneider, Parallel
Enumeration of Shortest Lattice Vectors

[Her+10] Hermans et al., “Parallel Short-
est Lattice Vector Enumeration on Graphics
Cards”

[Kuo+11] Kuo et al., “Extreme Enumeration
on GPU and in Clouds - - How Many Dollars
You Need to Break SVP Challenges -”

[GNR10] Gama, Nguyen, and Regev, “Lattice
Enumeration Using Extreme Pruning”

Aono, Nguyen and Shen [ANS18]. By using the lwe-estimator [APS15b]
we obtain the block size β required by the BKZ [SE94; SE94] algorithm to suc-
cessfully run key recovery on Kyber [Sch+22] using the primal lattice attack.
Using n = β and E[#T] equal to the returned cost of enumeration when
using a custom cost model implementing the lower bound from [Aon+18, Eq.
16], and momentarily assuming E[

√
#T] ≈

√︁
E[#T] (cf. Section 7.1.4),

we can see that

logE[
√︁

#Tn] ≈ logE[#T] + log β

2
≈

⎧⎪⎪⎨⎪⎪⎩
90.3 for Kyber-512,

166.2 for Kyber-768,

263.7 for Kyber-1024 ,

with T collecting 264 cylinder pruning enumeration trees of dimension β.
While the above numbers are a rule-of-thumb approximation, it can be

seen that most likely and regardless of the value of T-Depth(W), breaking
Kyber-768 and Kyber-1024 with a single direct quantum enumeration will
not be possible within MaxDepth ≤ 296. To deal with this issue, we propose
combining quantum backtracking with classical enumeration, in a manner
similar to classical parallel enumeration.

7.1.3 Combined Classical-Quantum Enumeration

Generally, parallelization of lattice enumeration [DS10; Her+10; Kuo+11]
is conceptually simple, as the tree structure directly induces a partitioning
to the search problem. This means that when searching for short vectors
on a tree n levels deep (where n = β is the BKZ block size), one can first
serially enumerate all nodes on level k < n, and then run in parallel lattice
enumeration on the subtrees rooted at level k of depth at most n− k.

Following this approach, we will run classical enumeration up to depth k,
and proceed to run quantum enumeration on the smaller subtrees of depth
h ≤ r − k, corresponding to sub-lattices of dimension h. We will choose k
such that the depth of any call to QPE(W) is within the limit of MaxDepth,
following Corollary 6. We depict the general strategy in Figure 7.2.

This combined approach is independent of the implementation of the
quantum circuits, particularly of the operatorW . This means we would be
able to estimate bounds on the cost of the attack given different possible
values for T-Depth(W) and GCost(W), including generous lower bounds
(cf. Section 7.2.1).

The approach is also compatible with pruned enumeration techniques.
In the remainder of the paper, we will focus in particular on cylinder prun-
ing [GNR10]. We will start by analyzing the cost of the combined enumer-
ation algorithm on a single (possibly pruned) tree, in Section 7.1.4, and
extend this to the case whereM pruned trees are combined to achieve high
success probability, in Section 7.1.5.

7.1.4 Combined Enumeration of a Single Tree

We start by recalling some notation introduced in Section 4.3 to describe
enumeration trees, illustrated in Figure 7.2. Given a tree of depth n, its
nodes are partitioned into sets (Zi)

n
i=1 of expected cardinality (Hi)

n
i=1 over

estimating the cost of quantum enumeration 114

Figure 7.2: Combined classical-quantum enumeration tree. Quantum enumeration
will happen on subtrees rooted at level k, here circled in purple.

[GNR10] Gama, Nguyen, and Regev, “Lattice
Enumeration Using Extreme Pruning”

the distribution of lattices being inspected, where Zi collects all the nodes
“on level i”, that is, of distance i from the root node r. Any node g ∈ Zk

generates a subtree T(g) of depth h ≤ n − k. The nodes of this subtree
are partitioned into sets (Wk,i(g))

h
i=1 of expected cardinality (Sk,i)

h
i=1 over

random trees and g distributed uniformly in Zk. The expected number of
nodes in the subtree T(g), including the root g, is 1 +Nk,h, where Nk,h :=∑︁h

i=1 Sk,i, while the expected number of nodes in the entire enumeration
tree T , including the root r, equals 1 + 1

2

∑︁n
i=1Hi. The 1

2 factor comes
from the fact that the tree is symmetric around 0, and hence only half of the
tree needs to be searched to identify all the vectors within the enumeration
radius, up to sign.

Classically and Quantumly Enumerated Components.

We first discuss how we divide the classical and quantum components of the
enumeration algorithm.

Classical Component. In the setting of combined classical-quantum enu-
meration, let k be the level up to where classical enumeration is performed.
This costs

E
random
tree T

[Classical GCost] ≈ 1 +
1

2

k∑︂
i=1

Hi, (7.5)

where we equate the cost of classical enumeration to the number of nodes
visited by the algorithm, as it is standard in the literature.

Quantum Component. After the classical enumeration phase, we have
Hk nodes on level k, each admitting a subtree of height h ≤ n − k, and
covering the remaining levels of the full enumeration tree. A natural ap-
proach could be to enumerate all Hk subtrees individually (and possibly in
parallel). However, it is not known which subtree contains the (likely few)
marked nodes, meaning that we would be running ≈ Hk calls to quantum
enumeration. In both pruned and non-pruned enumeration, the bulk of the
nodes contained in the trees being traversed is contained in the “middle”
levels Zi for i ≈ n/2, with pruning “spreading the bulk” on a larger window
of levels around n/2 [GNR10, Fig. 1] as in Figure 7.3. For our setting, this

estimating the cost of quantum enumeration 115

[GLM08] Giovannetti, Lloyd, and Maccone,
“Quantum Random Access Memory”

[Kup11] Kuperberg, Another subexponential-
time quantum algorithm for the dihedral hid-
den subgroup problem

[JR23] Jaques and Rattew, QRAM: A Survey
and Critique

would imply three scenarios, depending on k:

k ≈ 1, in this case most of the tree fits within the quantum enumeration
subroutine, and a quadratic speedup is possibly achievable,

k ≈ n/2, in which case we would be running≈ Hn/2 quantum enumeration
calls, meaning that the GCost of the operation would be proportional
toHn/2, which is approximately the cost of fully-classical enumeration.

k ≈ n, which means that we would be running some quantum enumeration,
but the bulk of the enumeration would anyway be classical, nullifying
any possible speedups from quantum enumeration.

While the case k ≈ 1 is possible, requiring to tolerate a high enough
MaxDepth to traverse most of the enumeration tree within the quantum
subroutine is quite restricting; in particular, in light of the rule-of-thumb
numbers from Section 7.1.2.

r
Level
0

i ≈ n
2

n
Majority of nodes

Figure 7.3: The bulk of the nodes contained in the enumeration trees being traversed
is contained in the “middle” levels Zi for i ≈ n/2 [GNR10, Fig. 1].

A possible alternative approach for the quantum phase of the attack is
to collect all the subtrees rooted on level k under a single tree, by adding
a “virtual” root node as the “parent” to all the nodes in Zk, and to run
quantum enumeration on this tree; we illustrate this in Figure 7.4 for multiple
virtual nodes. This approach has the advantage of running a single quantum
enumeration rather than Hk, potentially achieving a better speedup than in
the previous case. However, this comes at a cost in terms of QRACM [GLM08;
Kup11; JR23], since the gi ∈ Zk would need to be first enumerated and
then stored in memory, to be accessible for the quantum algorithm. Except
for k ≈ 1 or k ≈ n, this approach may require a super-exponential amount
Hk of QRACM for any meaningfully small value of k such that a speedup
can be achieved (say, for k ⪅ n/2).

Given the issues of the two methods above, we consider an interpolation
of both. We assume to have access to enough QRACM to store at a time
2y nodes on level k. We combine classical and quantum enumeration by
using a classical enumeration routine to visit up to 2y nodes {gi}i ∈ Zk, and
collect them under a virtual root node v as to form a tree T(v). We then run
quantum enumeration on T(v). If we find a short leaf in T(v), we terminate.
Otherwise, we resume classical enumeration and repeat the collection and
the quantum enumeration processes.

Let (gi)i = g1, g2, · · · ∈ T be the sequence of nodes in the full
enumeration tree T visited in order by the classical enumeration. Let
gk1 , gk2 , · · · ∈ Zk be the subsequence of (gi)i of nodes on level k. Let
S1 = {gk1

, . . . , gk2y
}, S2 = {gk2y+1

, . . . , gk2y+2y
}, · · · ⊂ Zk be the sub-

sets of size 2y that our combined classical-quantum enumeration routine
collects under virtual nodes vi, such that Si is the set of nodes on the first

estimating the cost of quantum enumeration 116

[Bin+23] Bindel et al., Quantum Lattice Enu-
meration in Limited Depth

3The “+1” term coming from adding a “vir-
tual” root node.

4Before applying the quantum operatorW ,
one has to define the circuit using an upper
bound on the depth of the subtrees, since
this depth cannot be determined from the
root node alone. Since one of them will con-
tain the marked vertex (and hence be of full
height), we have to prepare the W circuit
to tolerate traversing a full-height subtree.
This is then constant for all calls toW .

level of the subtree T(vi). To be able to estimate the cost we make the
following conjecture.

Conjecture 2. Consider Vi := GCost(FindMV(T(vi))) as random variables
under the randomness of the distribution of enumeration trees for random
lattices. Then the Vi are identically distributed.

In [Bin+23, App. E] we present experimental evidence supporting this
conjecture in the case of pruned enumeration. Under Conjecture 2, we
estimate that the expected quantum gate cost of combined classical-quantum
enumeration is approximately

E
random
tree T

[Quantum GCost] ≈ E
random
tree T

⎡⎢⎢⎣ ∑︂
v, out of the

(1/2)·Hk/2
y

GCost(FindMV(T(v)))

⎤⎥⎥⎦
=

1

2
· Hk

2y
· E[GCost(FindMV(T(v)))] (by Wald’s identity) , (7.6)

where the factor of 1/2 is due to the lattice’s additive symmetry.

Expected Cost of one Quantum Enumeration.

After having illustrated how to divide the classical and quantum components,
we move our attention to computing the expected gate-cost of FindMV on
subtrees T(g) rooted at some node g. Here, we repurpose the analysis from
Section 7.1.1, adapting it to the case where the enumerated tree is rooted
on level k and has depth h ≤ n− k + 1.3

We start by recalling Equation (7.2) for the gate-cost of FindMV for a
tree T(g) of height h and with at most C children per node, following the
analysis in Section 7.1.1, which is

GCost(FindMV(T(g))) = DF(T(g)) · QD(T(g)) ·WQ(T(g),W) · GCost(W)

≥
√︁
#T(g) · h · GCost(W).

The GCost of operatorW and the expected number of repetitions are
independent of each other, and thus, the respective cost can be analyzed
individually. The cost of the former is explored in Section 7.2, while we
elaborate on the number of repetitions for a single tree next.

To computeE [GCost(FindMV(T(g)))]we first notice that DF(T(g)) and
QD(T(g)) are constant quantities in our analysis (namely, we set both to 1),
although in general they depend on the lattice problem and our setup of
the full algorithm (such as in the choice of k, which would be done a priori
based on cost estimations), as we describe in Section 7.1.2. Similarly, we set
h = n− k + 1. Hence, DF(T(g)), QD(T(g)), and h do not have a probability
distribution, and do not affect the computation of the expectation. Similarly,
the design ofW is done a priori4, and thus, the resulting GCost(W) is a
constant (cf. Section 7.2).

Remark 11. We must note that if the enumeration bound R is small enough to
guarantee only a few marked leaves in the full enumeration tree as in our case,
then the subtrees T(g) will likely often contain no marked leaf, and hence be of

estimating the cost of quantum enumeration 117

[ANS18] Aono, Nguyen, and Shen, “Quan-
tum Lattice Enumeration and Tweaking Dis-
crete Pruning”

5Experimentally, β > 45 appears to be
sufficient.

[Bin+23] Bindel et al., Quantum Lattice Enu-
meration in Limited Depth

height strictly smaller than n− k + 1. On the one hand, this means that on
most of the T(g) trees, DetectMV will be called only once at the root, meaning
DF(T(g)) = 1 (cf. Section 7.1.1). On the other hand, as part of WQ(T(g),W)

we must nonetheless assume “full height” h = n − k + 1, since the few trees
containing marked leaves are of this height. Underestimating the tree height
during QPE would mean that the marked leaves would not be found by FindMV.
As we are aiming for strict lower bounds, we do not consider the full height of
the implicit binary tree from Aono, Nguyen and Shen [ANS18].

This leaves us with having to estimate E[
√︁
#T(g)]. As pointed out

in [ANS18], the probability distribution of the number of nodes in enumera-
tion trees (or subtrees, such as T(g)) is not known. Jensen’s inequality gives
an upper bound

√︁
E[#T(g)] but no clear lower bound. We address this by

defining the multiplicative Jensen’s gap, and evaluate the cost of the attack
for different values of it.

Definition 7.1.1 (Multiplicative Jensen’s gap). Let X be a random variable.
We say X has multiplicative Jensen’s gap 2z if

√︁
E[X] = 2z E[

√
X].

This leaves us to having to estimate E[#T(g)]. Given a “virtual” node g
collecting 2y subtrees rooted at nodes {g1, . . . , g2y} ⊂ Zk, by linearity of
expectations

E
T,{gi}i

[#T(g)] = 1 +

2y∑︂
i=1

E
T,{gi}i

[#T(gi)]

= 1 + 2y (1 +Nk,h)

= 1 + 2y + 2y
h∑︂

j=1

Sk,j ,

where the expectation is taken over the distribution of random trees T , and
{g1, . . . , g2y} is assumed to be as a set of random elements of Zk. While this
may not be exactly true, as it may be easier to find “related” elements in
Zk, where their coefficient vectors are similar, we believe this gives a good
approximation of the cost.

To lower bound Sk,j , we start by observing that theWk,j(g) partition the
set Zk+j , since every element in the latter descends from an unique element
g ∈ Zk. By the definition of expectation,

Sk,j = E
g∼U(Zk)
rand. T

[|Wk,j(g)|] = E
random
tree T

⎡⎣∑︂
g∈Zk

|Wk,j(g)|
|Zk|

⎤⎦ = E
random
tree T

[︃
|Zk+j |
|Zk|

]︃
.

We then make a further conjecture to bound the expectation.

Conjecture 3. Given a random enumeration tree generated as part of BKZ-β
reduction for β large enough such that the Gaussian heuristic applies,5 a level
k ≥ 1, and a node g ∈ Zk, the expected number of nodes in level k+j descending
from g is E

[︂
|Zk+j |
|Zk|

]︂
≥ 1

2 ·
E[|Zk+j |]
E[|Zk|] = 1

2 ·
Hk+j

Hk
, where the expectation is taken

over the distribution of random trees T , and g is uniformly distributed in Zk.

In [Bin+23, App. B] we provide experimental evidence supporting
Conjecture 3. In [Bin+23, App. C] we further observe that in practice often
the stronger approximation Sk,j ≈ Hk+j/Hk holds.

estimating the cost of quantum enumeration 118

[Bin+23] Bindel et al., Quantum Lattice Enu-
meration in Limited Depth

[GNR10] Gama, Nguyen, and Regev, “Lattice
Enumeration Using Extreme Pruning”

Combining all the steps above gives us a heuristic estimation of

E
random
tree T

[Quantum GCost] ≈ 1

2
· Hk

2y
· E [GCost(FindMV(T(g)))]

≥ 1

2
· Hk

2y

⎛⎝ 1

2z

⌜⃓⃓⎷(︂1 + 2y + 2y−1

n−k+1∑︂
j=1

Hk+j

Hk

)︂
(n−k+1)

⎞⎠GCost(W),

(7.7)

reducing the estimation of a lower bound on the expected cost to the es-
timation of Hi and GCost(W). The estimation of Hi can be done using
standard lattice cryptanalysis techniques; we provide a detailed derivation
in the case of no pruning and of extreme cylinder pruning in [Bin+23, App.
A]. Estimations for GCost(W) are discussed in Section 7.2.1.

The same approach can be used to determine the depth of quantum
phase estimation of W , which is the limiting factor in a runtime analysis
with limited depth budget, resulting in

T-Depth(QPE(W))

≥ 1

2z

⌜⃓⃓⃓
⎷
⎛⎝1 + 2y + 2y−1

n−k+1∑︂
j=1

Hk+j

Hk

⎞⎠ (n−k+1) · T-Depth(W) . (7.8)

Remark 12 (On a more conservative bound on DF(T)). Now we can review
a better bound on DF(T) as in Section 7.1.2. In the setting of combined
classical-quantum enumeration, most of the Hk/2

y trees T(g) explored will
not contain any marked leafs. Given that the quantum GCost is estimated (cf.
Equation (7.7)) as

E
random
tree T

[Quantum GCost] ≈ Hk

2y+1
· E [GCost(FindMV(T(g)))]

=
Hk

2y+1
· E[DF(T(g)) · QD(T(g)) ·WQ(T(g),W) · GCost(W)] ,

we could set DF(T(g)) =
(︁

Hk

2y+1 − 1 + h log C
)︁
· 2

y+1

Hk
with h = n − k + 1

during cost estimation, to capture how when the enumeration radius is short
enough, h log C calls will likely be made on only one of the subtrees, and one
call will be made to the remaining Hk

2y+1 − 1 subtrees.

7.1.5 Combined Enumeration of a Set of Trees

In the context of enumeration with extreme pruning [GNR10] one considers
a trade-off between the success probability of finding a short vector and
the number of nodes pruned. Let p be the probability that the enumeration
tree contains a node corresponding to a sufficiently short lattice point, that
is p = 1 if the full tree is enumerated and p < 1 if branches are pruned.
In the case of extreme pruning, p ≪ 1, meaning that enumeration of the
tree is much cheaper, but likely to fail. To boost the success probability, the
original lattice basis is re-randomizedM times, for some large value ofM .
Under assumptions of independence between the resulting re-randomized
pruned trees, the probability of finding a short vector in at least one of the

estimating the cost of quantum enumeration 119

Figure 7.4: Full enumeration tree TM for combined classical-quantum enumeration.
Nodes and links in blue correspond to “virtual” nodes.

[Alb+20a] Albrecht et al., “Faster
Enumeration-Based Lattice Reduction: Root
Hermite Factor k1/(2k) Time kk/8+o(k)”

[Bin+23] Bindel et al., Quantum Lattice Enu-
meration in Limited Depth

[GNR10] Gama, Nguyen, and Regev, “Lattice
Enumeration Using Extreme Pruning”

[Aon+18] Aono et al., “Lower Bounds on
Lattice Enumeration with Extreme Pruning”

M pruned trees is 1− (1− p)M = 1− (1−Mp+O(p2)), which is high if
M ≈ 1/p asM ≫ 1. It should be noticed that in practice re-randomization
usually lowers the quality of the bases, essentially “undoing” some of the
lattice reduction [Alb+20a, Sec. 2.5]. However, we will ignore this effect
for the sake of finding a simple lower bound and assume that the quality
of re-randomized bases for the same lattice is the same as the one for the
original basis. Moreover, we assume that pruned trees corresponding to
these re-randomized bases are independent of each other.

For our purposes, we will collect theM trees corresponding toM bases
into a single tree TM , by adding a top “super-tree” connecting their roots to
an overall root. Let r be the root node of this new tree and let r1, r2, ..., rM
be the root nodes of the enumeration trees with the re-randomized bases
(Bi)

M
i=1. We arrange r as parent node of the ri; a sketch of the full tree is

illustrated in Figure 7.4. The backtracking predicate (cf. Section 3.1.2) that
decides on branching on input of a node ri will always return Indeterminate
on the levels 0 and 1, since all enumeration subtrees rooted at the respective
ri are independent of each other due to basis re-randomisation. We define
a quantity HM

k counting the expected number of nodes on level k of TM ,
in terms of H(i)

k := E[#{nodes on level k of T(ri)}] (that is “Hk from tree
T(ri)”), where T(ri) is the pruned enumeration tree rooted at ri. It follows
that

HM
0 = 1 ,

HM
1 =M ,

HM
k =

∑︂
i∈[M]

H
(i)
k−1 =M ·Hk−1 if k > 1 .

From HM
k we can then redefine SM

k,j similarly to Sk,j , reducing it to
Hk−1. This means that we can “port” our cost formulae from Section 7.1.4
by replacing Hk with HM

k . We estimate HM
k in the cases of no pruning and

of extreme cylinder pruning in [Bin+23, App. A] since this is a standard
computation taken from [GNR10; Aon+18], and continue with the cost
estimation GCost(W) in the next subsection.

instantiations for the quantum operatorW 120

[Her+10] Hermans et al., “Parallel Short-
est Lattice Vector Enumeration on Graphics
Cards”

[Mon18] Montanaro, “Quantum-Walk
Speedup of Backtracking Algorithms”

[Mon18] Montanaro, “Quantum-Walk
Speedup of Backtracking Algorithms”

7.2 instantiations for the quantum operatorW

In this section, we focus on exploring lower bound costs for the quantum op-
eratorW . At its core, quantum enumeration consists of multiple repetitions
of QPE on the operatorW (see Figure 7.1), meaning that concrete estimates
of the depth and gate-cost of quantum enumeration depend on the size ofW .
In estimating whether quantum enumeration could be leveraged under a
MaxDepth constraint,W plays two roles. First, its depth T-Depth(W) plays
a part in determining how much classical versus quantum enumeration is
used, by constraining the admissible values for k, y and z (cf. Equation (7.8))
based on the requirement that T-Depth(QPE(W)) ≤ MaxDepth, since by
Corollary 6 the gate depth of QPE is partly determined by T-Depth(W).
Second, its gate-cost GCost(W) is a factor in estimating the total cost of
the attack.

7.2.1 Query-based Model

The query-based model (cf. Section 3.3.1) assumes access to a black-box
oracle that computes on-demand the operator W on any input. There-
fore, we account any query to the operator as having “unit cost”, meaning
T-Depth(W) = GCost(W) = 1.This setting implies a conservative lower
bound on the cost of quantum enumeration. It also represents the setting
where classical-quantum enumeration can make the most of any hypothetical
quantum speedups. As such, the resulting gate depth is a very conservative
lower bound as implementations of the operatorW are of depth greater than
one.

7.2.2 Circuit-based Model

Here, we aim to estimate the size of a minimal or smallest known quantum
operatorW in the circuit-based model (cf. Section 3.3.2). The objective is to
provide a more realistic lowest-known bound on the gate cost (i. e., number
of T gates) ofW than the very conservative query-based model. Our focus
is on finding an approximate smallest T -count and T -depth for arithmetic
operations used inside ofW . We claim that, at a minimum, the operator
W has to implement a predicate P deciding whether a projected lattice
point has norm larger than the pruning bound Ri. We assume that each
coefficient of the state vector |ci⟩ consists of m = ⌈log q⌉ qubits. Whenever
we require floating point arithmetic, we follow [Her+10] assuming double
precision is used, meaning ξ = 53 bits of precision are required. To estimate
a lower bound to the cost of the minimal circuit forW , we ignore the cost
for all operations except for the bare minimum arithmetic that is required to
compute the single, most expensive lattice point projection.

Components ofW

Given a tree T of height h, Montanaro [Mon18] defines the operator W
using two operators RA and RB , the first acting on all nodes with even
distance from the root, and the second on all nodes with odd distance. The
implementations of the two operators are nearly identical, and as such we will

instantiations for the quantum operatorW 121

[PS13] Pham and Svore, “A 2D nearest-
neighbor quantum architecture for factoring
in polylogarithmic depth.”

[Dra+06] Draper et al., “A Logarithmic-
Depth Quantum Carry-Lookahead Adder”

[PS08] Pujol and Stehlé, “Rigorous and Effi-
cient Short Lattice Vectors Enumeration”

[Det+10] Detrey et al., “Accelerating Lattice
Reduction with FPGAs”

[Her+10] Hermans et al., “Parallel Short-
est Lattice Vector Enumeration on Graphics
Cards”

[tea23] team, “fplll, a lattice reduction li-
brary, Version: 5.4.2”

only capture the original description of RA [Mon18, Alg. 3] by decomposing
it into the following operators:

USetup: quantum operator that prepares the quantum state by advancing
the variable assignment (i. e., level k of the tree), and ensures that the
operator acts on the correct set of nodes (i. e., even or odd levels for
USetup(RA) or USetup(RA), respectively).

Uα,S: quantum operator that generates a superposition of children of a node,
performing the map |0⟩ ↦→ |φα,S⟩, where S is the set of all children of
a node.

UP : quantum operator that computes the norm of the projected lattice point
being inspected, and compares the length of the projection with the
pruning bound Ri. The predicate is executed to identify the children
of a node.

U0: reflection through |0⟩. Together with the operator Uα,S it performs the
diffusion operation I − 2 |φα,S⟩ ⟨φα,S |.

UUncompute: quantum operator to uncompute the ancillary states and the
inversion of the setup step USetup.

Quantum Arithmetic

Smallest known arithmetic circuits. The quantum arithmetic litera-
ture contains many design proposals for integer and floating point adders
and multipliers. Generally, most algorithms are either “ports” of classical
designs [Dra+06; Hän+20; HRS17; Nie+23; MT19], or they rely on the
quantum Fourier transform to evaluate these operations [RG17; Koc+22].
As not all papers work using the same metrics or even quantum computing
architectures, direct comparisons and trade-off evaluations can be difficult.
For example, Pham and Svore [PS13] claim additions in constant depth
and multiplications in logarithmic depth, however this seems to require a
specifically designed quantum architecture. For a rule-of-thumb estimation
of our attack costs, we opt to chose potentially more common asymptotics for
adders and multipliers achieving the smallest T counts and depths in our lit-
erature review (other than [PS13]). We report these in Table 7.1, and ignore
constants and lower order terms hidden by the O notation. Whenever num-
bers of different bit lengths are multiplied, we conservatively assume both to
have the smaller length, since we have not found sources describing quantum
circuits for unbalanced multiplication. For the “x ≤ y” comparison operator,
we use a circuit with the same asymptotic size of an adder [Dra+06]. We
report the smallest (to our knowledge) in Table 7.1. During our computa-
tions, we will be ignoring constants and lower order terms hidden by the O
notation.

Floating Point Numbers. We also define a value ξ that equals the amount
of floating point precision required to store the coefficient of the basis vectors
bi. The literature on this topic either proposes algorithms for estimating the
required precision [PS08; Det+10], appearing this to be about Θ(n), or uses
double precision [Her+10]. We notice that while the fplll library [tea23]

instantiations for the quantum operatorW 122

Table 7.1: Used T -gate count and depth asymptotics for quantum arithmetic circuits on x-bit numbers.

Operation T-Depth GCost Reference

Addition and Comparison O(log x) O(x) [Dra+06] or [Hän+20, Table 2]
Multiplication and Squaring O(log2 x) O(x log(x) log(log(x))) [Nie+23]

6In classical implementations, this com-
putation benefits from caching of Gram-
Schmidt orthogonalisation operations and
results [tea23]. Asymptotically, the num-
ber of individual arithmetic operations
is the same as computing directly from
(b1, . . . , bh).

includes support for arbitrary precision floating point numbers, often experi-
ments use double- or quadruple-precision floating point numbers. As a con-
servative choice, we observe that any setting where quantum-enumeration
would be advantageous would likely result in requiring more than double-
precision, since otherwise cheap classical implementations are available, and
therefore consider ξ = 53 to be a lower bound on the required precision.

Table 7.2: Assumed cost of arithmetic operations to implement the predicate P . Each operation has input numbers of bit length xi

and outputs numbers of size xi+1.

Operation Input bit lengths T-Depth GCost

1, parallel multiplication x0 = min(m, ξ) log2(x0) h2 · x0 log(x0) log(log(x0))
2, binary tree addition x1 = m+ ξ log h · log(x1) h2 · x1
3, squaring x2 = x1 + log h log2(x2) h · x2 log(x2) log(log(x2))
4, binary tree addition x3 = 2x2 log h · log(x3) h · x3
5, comparison x4 = x3 + log h log(x4) x4

Depth and Cost Estimation of W . In our setting, quantum enu-
meration is being performed on a tree T(g ∈ Zk) corresponding to
a lattice coset of dimension h = n − k, where n is the dimension
of the full lattice Λ = Λ(b1, . . . , bn) being enumerated. This process
would require performing arithmetic using the projected lattice basis vec-
tors (πn−ℓ+1(bn−ℓ+1), . . . , πn−ℓ+1(bn−k)) of Λ for all levels k < ℓ ≤
n. An operator Umin

P is designed as to evaluate the predicate P which
identifies projected vectors v ∈ πn−ℓ+1(Λ) such that ||v|| ≤ Rℓ and
πn−k+1(v) = g. In order to lower-bound the cost of operation, we
only consider the case of evaluating this inequality at ℓ = n, where
(πn−ℓ+1(bn−ℓ+1), . . . , πn−ℓ+1(bn−k)) = (b1, . . . , bh). Evaluating predicate
P becomes checking whether

⃓⃓⃓
|
∑︁

i≤h cibi

⃓⃓⃓
|2 ≤ R2 − ||g||2 for some integer

coefficients (ci)i. Since (b1, . . . , bh) span an h-dimensional vector space, we
consider them to be h-dimensional by assuming an appropriate change of
basis was applied.6 Our estimate for the cost of Umin

P is derived as in Table 7.2
applying the following sequence of operations:

USetup: sets up the states, we assume GCost(USetup) = T-Depth(USetup) =

0.

Umin
α,S : generates a superposition of the children of a node. At a bare min-

imum, this requires a uniform superposition
∑︁q−1

i=0 |i⟩ which is com-
puted by a single (parallel) layer of Hadamard gates. Since we are only
accounting for T , we assume T-Depth(Umin

α,S) = T-Depth(Umin
P) and

GCost(Umin
α,S) = GCost(Umin

P), as Hadamard gates do not contribute
T gates.

instantiations for the quantum operatorW 123

7In classical implementations, this compu-
tation benefits from extensive caching of
Gram-Schmidt orthogonalisation operations
and results [tea23]. Asymptotically, the
number of individual arithmetic operations
is the same as if computing directly from the
basis (b1, . . . , bh).

[Jaq+20] Jaques et al., “Implementing
Grover Oracles for Quantum Key Search on
AES and LowMC”

Umin
P : evaluates the predicate P which identifies projected vectors v ∈

πn−ℓ+1(Λ) such that ||v|| ≤ Rℓ and πn−k+1(v) = g, for all levels
k < ℓ ≤ n. In order to lower-bound the cost of this operation, we only
consider the case of evaluating this inequality at ℓ = n, where the
condition becomes checking whether

⃓⃓⃓
|
∑︁

i≤h ci⃗bi

⃓⃓⃓
|2 ≤ R2 − ||g||2.7

The cost of the operation needs to account for at least the cost of the
following operations (summarised in Table 7.2):

1. Parallel multiplication of h2 pairs (ci, (⃗bi)j) ↦→ ci(⃗bi)j , ofm- and
ξ-bit length, outputting numbers of bit length m+ ξ.

2. Addition of coefficients (c1(⃗b1)j , . . . , ch(⃗bh)j) ↦→
∑︁

i ci(⃗bi)j for
j ∈ [h]. These additions can be run in parallel over j. For a fixed
j, the corresponding sum is run by adding terms in pairs, forming
a binary tree of sums. Each

∑︁
i ci(⃗bi)j output is m + ξ + log h

bits long.

3. Squaring the
∑︁

i ci(⃗bi)j sums in parallel (output bit length 2(m+

ξ + log h))

4. Adding the squared sums in a binary-tree fashion to obtain⃓⃓⃓
|
∑︁

i≤h ci⃗bi

⃓⃓⃓
|2 =

∑︁
j(
∑︁

i ci(⃗bi)j)
2 of bit length 2(m+ξ+log h)+

log h.

5. The last operation is the comparison with the (adjusted) pruning
bound R2 − ||g||2.

We depict the implementation of the minimal Umin
P implementation in

Figure 7.5.

U0: the quantum operator computing 2 |0⟩ ⟨0| − Id (with Id the identity op-
erator) which requires mult-controlled-Z gates, we estimate requiring
at least one T gate.

UUncompute: we conservatively assume that uncomputation does not re-
quire T gates, as in the case of measurement-based uncomputa-
tion of AND gates in [Jaq+20], and assume T-Depth(UUncompute) =

GCost(UUncompute) = 0.

Corollary 7. The GCost in the “Circuit-based Model” is

GCost(W) ≥ h2 ·min(m, ξ) log(min(m, ξ)) log(log(min(m, ξ))) (7.9)

+ h2 · (m+ ξ)

+ h · ((m+ ξ) + log h) log(((m+ ξ) + log h)) log(log((m+ ξ) + log h))

+ h · 2 ((m+ ξ) + log h) + 2 ((m+ ξ) + log h) + log h.

Corollary 8. The T-Depth in the “Circuit-based Model” is

T-Depth(W) ≥ log2(min(m, ξ)) + log h · log((m+ ξ)) (7.10)

+ log2(((m+ ξ) + log h))

+ log h · log(2 ((m+ ξ) + log h))

+ log(2 ((m+ ξ) + log h) + log h).

estimating quantum enumeration attacks on kyber 124

T-depth: log2 min(m, ξ)

T-depth: log h · (m+ ξ)

T-depth: log2(m+ ξ + log h)

T-depth: log h · log(2(m+ ξ + log h))

T-depth: log(2(m+ ξ + log h) + log h)

⃓⃓⃓
ci, (⃗bi)j

⟩︂
UMult

⃓⃓⃓
ci, (⃗bi)j

⟩︂
|0⟩

U Binary
Addition
Tree

⃓⃓⃓
ci(⃗bi)j

⟩︂
|0⟩

USquare

⃓⃓⃓∑︁
i ci(⃗bi)j

⟩︂
|0⟩

U Binary
Addition
Tree

⃓⃓⃓
(
∑︁

i ci(⃗bi)j)
2
⟩︂

|0⟩
UCmp

⃓⃓
||
∑︁

i cibi||2
⟩︁

|0⟩
⃓⃓
||
∑︁

i bici||2 ≤ R2 − ||g||2
⟩︁

Figure 7.5: Minimal quantum circuit of Umin
P .

[Sch+22] Schwabe et al., CRYSTALS-KYBER

[Nat17] National Institute for Standards and
Technology, Post-Quantum Cryptography Call
for Proposals

[BG14] Bai and Galbraith, “Lattice decoding
attacks on binary LWE”

[Alb+18] Albrecht et al., “Estimate All the
LWE, NTRU Schemes!”

7.3 estimating quantum enumeration attacks on kyber

In Sec. 7.1 and 7.2, we have described methods to explore the enumeration
tree under a MaxDepth limitation (cf. Sec. 7.1.4 and 7.1.5), and introduced
two different instantiations of the quantum backtracking operatorW .

In this section, we leverage these results to present cost estimations
for primal lattice reduction attacks using quantum enumeration against
Kyber [Sch+22], the post-quantum KEM selected by NIST for standard-
ization in 2022. To that end, we compute lower bounds on the cost of
combined classical-quantum cylinder pruning in the gate-cost metric against
the three different parametrisations of Kyber (cf. Table 7.3). For each of them,
we consider attacks within MaxDepth ∈ {240, 264, 296}, as suggested by
NIST [Nat17], each assuming the two different instantiations of the operator
W outlined in Section 7.2.

7.3.1 Attack Setting

Our aim in this section is to estimate a lower bound on the possible cost of
classical-quantum enumeration in the setting of lattice-based cryptography.
As a case-study, we look at the primal attack on Kyber, where a block lattice
reduction algorithm is used to recover the secret key of the cryptosystem by
reducing an embedding lattice [BG14] constructed using the public key.

We follow the convention of using BKZ as the lattice reduction algorithm,
and assume that its SVP oracle is instantiated using our classical-quantum
enumeration approach. The common approach to primal attack estimates
is to choose a cost model for BKZ that accounts for the cost of running the
SVP oracle and for the number of calls made [Alb+18]. Normally, cost
models will use a closed formula for the cost of enumeration in dimension
β to account for the cost of the SVP oracle, either fitted or derived from

estimating quantum enumeration attacks on kyber 125

Table 7.3: Kyber parameters [Sch+22, Sec 4.3] with respective BKZ block-sizes required for the primal attack; column log#TM
reports our estimated lower bound on the number of nodes of the enumeration tree of dimension β using extreme cylinder pruning
with M = 264 and success probability ≈ 1, following [Aon+18, Eq. (16)].

Scheme LWE dim. n Modulus q Block-size β log#TM Targeted AES security

Kyber-512 512 3329 406 172.5 AES-128
Kyber-768 768 3329 623 323.2 AES-192
Kyber-1024 1024 3329 873 517.7 AES-256

[APS15b] Albrecht, Player, and Scott, “On
the concrete hardness of Learning with Er-
rors”

[Bin+23] Bindel et al., Quantum Lattice Enu-
meration in Limited Depth

[Che13] Chen, “Reduction de reseau et secu-
rite concrete du chiffrement completement
homomorphe”

[Aon+18] Aono et al., “Lower Bounds on
Lattice Enumeration with Extreme Pruning”

[ANS18] Aono, Nguyen, and Shen, “Quan-
tum Lattice Enumeration and Tweaking Dis-
crete Pruning”

8Albeit not at cryptographically relevant
sizes, in [Bin+23, App. D] we present the
results of small-dimension measurements of
the Jensen’s gap against q-ary lattices. For
pruned enumeration in dimension β ≈ 60,
the gap appears to be around z ≈ 1.

theory or experiments. This is then used with some estimation script such
as the lwe-estimator [APS15b], which will simulate the effect of lattice
reduction and find the cheapest parametrisation of the attack leading to high
success probability.

Since our setting involves an implicit relation between the gate-cost of the
SVP oracle and the MaxDepth constraint, we do not attempt to fit our results
on a curve as a function of β. Instead, we opt for calling an estimator script
assuming the optimistic cost of classical enumeration obtained as part of our
analysis (cf. [Bin+23, App. A]), which assumes that input bases achieve a
linear lattice profile (as predicted by the Geometric Series Assumption, using
the root-Hermite factor ((πβ)1/ββ/(2πe))1/(2(β−1)) from [Che13]) resulting
in a generous lower bound of the cost of solving SVP via enumeration,
2β log β/8+O(β), and assuming specifically the lower bound costs for extreme
cylinder pruning proven in [Aon+18]. From this cost estimation we obtain
three different block sizes β for the three parameter sets of Kyber, reported
in Table 7.3. We then proceed to estimate the gate-cost of classical-quantum
enumeration in dimension β under different MaxDepth values, and compare
these with the corresponding approximate gate-cost of Grover search on AES
for the corresponding category (e.g., Kyber-512 with AES-128).

It is important to highlight an issue towards claiming lower bounds on the
cost of classical-quantum enumeration, and how we address it. As pointed
out in [ANS18] and mentioned in Section 7.1, the expected speedup of
quantum enumeration over equivalent classical enumeration may be more
than quadratic, depending on the probability distribution of the size of
the trees being enumerated, due to Jensen’s inequality implying E[

√
#T] ≤√︁

E[#T]. Since we would like to provide lower bounds to the expected attack
cost, we define z ≥ 0 such that E[

√
#T] = 2−z

√︁
E[#T], and estimate the

attack cost for z = 0, . . . , 64. While we do not know what the value of z may
be for lattices encountered in cryptanalysis,8 this allows us to delegate the
estimation of the concrete cost to future analysis on the distribution of #T ,
while clearly identifying threshold values z0, such that z ≥ z0 may imply
possible effective attacks, while z < z0 would indicate that classical-quantum
enumeration would not threaten Kyber’s security.

We note that an alternative approach could be deriving a lower bound
to the Jensen’s gap, depending on some other parameter of the problem.
We attempt this approach in [Bin+23, App. I], where we derive bounds
depending on the variance of #T . This, however, presents the same issue
as above, namely that we are not aware of the exact distribution of #T .
This means that while it provides a different formulation of the problem, it
currently does not represent a better alternative to testing many values of

estimating quantum enumeration attacks on kyber 126

[Bin+23] Bindel et al., Quantum Lattice Enu-
meration in Limited Depth

[JS19] Jaques and Schanck, “Quantum
Cryptanalysis in the RAM Model: Claw-
Finding Attacks on SIKE”

z and looking for threshold values. We do, however, note that preliminary
results in [Bin+23, App. E] suggest that the distribution may be relatively
narrowly distributed about its mean.

Overall, our estimation code for the cost of enumeration on a β-
dimensional lattice bases is given on input a multiplicative Jensen’s gap
2z, a MaxDepth constraint, a number of bases M used during extreme
pruning (here, M = 264), a maximum number Y of tree nodes that can
be stored in QRACM (here, Y = 264), an estimate on the size of the quan-
tum backtracking operatorW and on the values for DF, QD, and WQ, and
pruning parameters for estimating upper bounds on Hk, and optimizes the
level k which separates classical and quantum enumeration as well as the
maximal number 2y of nodes on this level to be combined under a virtual
root, looking for the cheapest possible attack. We estimate the cost assuming
extreme pruning attacks targeting success probability ≈ 1.

An overview over all parameters used in the estimation process is given
in Table 7.4, while the costing loop is presented in Figure 7.6. We have made
the source code used to produce our experimental results, tables, and plots
publicly available.

Table 7.4: Attack parameters for experimental evaluation.

MaxDepth ∈ {240, 264, 296}, y ∈ {0, . . . , 64}, z ∈ {0, . . . , 64}, M = 264,

n ∈ {406, 623, 873}, k ∈ [n], h = n−k+1, DF(·) = QD(·) = 1, WQ(T) =
√
#T · h

CostingLoop(n,MaxDepth, Y = 264, Z = 264)

1 : for z ∈ {0, 1, 2, ..., log(Z)}
2 : k ← n+ 1
3 : while LB(T-Depth(QPE(W))) ≤ MaxDepth and k ≥ 0
4 : y ← Largest y ∈ {0, 1, 2, ..., log(Y)}
5 : s.t. LB(T-Depth(QPE(W))) ≤ MaxDepth
6 : // store classical cost and quantum cost

7 :
CC← E

random
tree T

[Classical GCost]

8 :
QC← LB(E

random
tree T

[Quantum GCost])

9 : GCost[z][y, k]← CC+ QC
10 : k ← k − 1

11 : return
(︁
min
y,k

(GCost[z])
)︁
z∈{0,1,2,...,log(Z)}

Figure 7.6: Pseudocode for cost estimation under MaxDepth constraint, following
Equation (7.8). GCost[z][y, k] is the total cost associated with the quantum enumer-
ation (i. e., the sum of Equation (7.7) and Equation (7.5)) with M = 264. Operator
W is instantiated according to Section 7.2.1 and Section 7.2.2, respectively. LB(·)
stands for “lower bound of”.

7.3.2 Cost Estimation of the Attack

Cost Metrics and Success Conditions. As mentioned in Section 3.3,
the cost of a quantum algorithm can be measured using various metrics. In
this paper, we prefer to focus on the number of classical and quantum gates
required by the attack in total, since, plausibly, applying one quantum gate
requires running one classical computation on some microcontroller [JS19],

https://github.com/mtiepelt/QuantumLatticeEnumeration

estimating quantum enumeration attacks on kyber 127

9We lower bound this as the number of
nodes visited in the classical phase plus the
number of quantum gates applied during the
quantum phase of the attack.

[Jaq+20] Jaques et al., “Implementing
Grover Oracles for Quantum Key Search on
AES and LowMC”

10Under noMaxDepth constraint, [Jaq+20,
Table 10] suggests that the GCost of key re-
covery against AES-128 (resp. AES-192, AES-
256) with success probability ≈ 1 is ≈ 283

(resp. 2115, 2148). Under a depth constraint,
[Jaq+20, Table 12] suggests the GCost ≈
2157/MaxDepth (resp. 2221/MaxDepth,
2285/MaxDepth). We note that further
improvements in the design of the Grover
oracles against AES have achieved minor
speedups in terms of overall gate cost.

[Bin+23] Bindel et al., Quantum Lattice Enu-
meration in Limited Depth

[Aon+18] Aono et al., “Lower Bounds on
Lattice Enumeration with Extreme Pruning”

[GNR10] Gama, Nguyen, and Regev, “Lattice
Enumeration Using Extreme Pruning”

meaning that to some extent these two quantities can be compared and
combined. As such, one could say a classical-quantum enumeration attack
was successful if the total number of gates required9 was lower than some
threshold capturing some security notion.

The success of an attack can be defined in multiple ways. One can
note that submissions to the NIST standardization process, such as Kyber,
were required to propose parameters for cryptographic primitives as hard
to break as AES or SHA (depending on the targeted security category).
This would imply a notion where a quantum attack against Kyber may
be considered successful only if its cost is lower than the number of gates
required to run Grover search against AES, which we estimate using Tables 10
and 12 of [Jaq+20].10 It should be noticed that the reason for such a
separation between classical and quantum attacks is due to the assumed and
yet-unknown hidden costs of quantum computation.

While the comparison with the cost of Grover on AES is our primary
success metric for the attack, in [Bin+23, App. G.1] we investigate the
cost of the attack with respect to possible alternative success metrics. In
the following paragraphs we proceed to explore whether combined classical-
quantum enumeration could plausibly be cheaper than Grover search on
AES, where plausibility depends on the value of the multiplicative Jensen’s
gap required (cf. Definition 7.1.1). To be conservative, we compare the
cost of Grover search to a simple sum of classical and quantum gate costs
for enumeration, which is likely an extremely generous approach towards
quantum computation cost estimation.

Dependence on Pruning Parameters. Since enumeration is being per-
formed on pruned enumeration trees, pruning parameters play an important
role in determining the cost of the attacks. Lower bounds for the pruning
radii and for the values of Hk in the extreme cylinder pruning setting can be
found in [Aon+18], while upper bounds can be found via optimization tech-
niques, thanks to the seminal work of Gama, Nguyen and Regev [GNR10].
We discuss in more detail how we obtain both bounds in [Bin+23, App. A.2].
Yet, we want to briefly speculate about three different ways these can be
combined to produce different attack cost estimates that we reproduce in
Table 7.5.

Subtree-size estimation is performed leveraging Conjecture 3 where the
ratios Hk+j/Hk are used to lower bound E[|Zk+j |/|Zk|]. A first cautious
approach, that we label “LB/UB”, is to strictly lower bound Hk+j/Hk by
taking the lower bound of Hk+j and dividing it by the upper bound of Hk.
A more speculative approach could be that of assuming that the pruning
parameters obtained via optimisation, and used to determine the upper
bound, cannot be significantly improved. In this scenario, that we label
“UB/UB”, the upper bounds are assumed to be exact values, and the previous
numerator can be replaced with an upper bound forHk+j . Finally, one could
instead speculate that the optimal pruning parameters found are only a local
optimum, and pruning radii closer to the lower bounds can potentially be
found. In this scenario, that we label “LB/LB”, one could imagine that the
radii for Hk, when k < n, could be improved, leading to E[|Zk+j |/|Zk|]
being closer to the ratio of lower bounds from [Aon+18]. This latter scenario

estimating quantum enumeration attacks on kyber 128

could counter-intuitively reduce the overall cost of classical enumeration, but
increase the average size of subtrees rooted on level k. In the remainder of
the article, we report gate-cost estimates in these three scenarios.

Cost Estimation without MaxDepth Restrictions.

We start by estimating the cost of enumeration without MaxDepth
restrictions—the most favorable setting to the adversary. In this setting,
a quadratic speedup in terms of quantum depth can be achieved as the full
enumeration tree can be enumerated directly within a call to FindMV, mean-
ing no classical phase is required. This means, the attack consists of calling
FindMV(TM) once. No QRACM is needed, and the classical cost is null. We
do notice that this is not necessarily optimal but we consider it as it is a
good reference for the cost of other attacks. We report the cost of this attack
under MD =∞k=0 in Table 7.5. This is also the state of the art prior to the
introduction of combined classical-quantum enumeration. The dependency
between the cost of the attack and the Jensen’s gap 2z is straightforward in
this setting, with the quantum cost exponentially reducing as z increases. It
appears from our estimates that quantum enumeration on Kyber-768 and
-1024 may be more expensive than key-search on AES in this setting. Only
Kyber-512 appears to be plausibly approachable, z ≥ 7 sufficing, yet this is
still only considering the query model forW . A significantly larger Jensen’s
gap of z ≥ 32 is already required in the circuit-based model ofW in Sec-
tion 7.2.2. We remark that in this setting Grover search on AES can be very
competitive, achieving a full quadratic speedup.

We also consider the cost of running our combined classical-quantum enu-
meration attack in unlimited depth. Differently from the attack mentioned
above, we decide not to fit the entire tree within one quantum enumeration,
and rather first perform an optimal amount of classical precomputation. We
report the results of this cost estimation in Table 7.5, under the “MD =∞”
rows and show how the quantum and classical cost perform in Figure 7.7.
This is the minimal cost we find when unlimited quantum depth is available.
The results are quite similar to those of fully-quantum enumeration, with
only Kyber-512 and -768 appearing possibly easier to attack in the case
where Conjecture 3 is instantiated using “LB/UB” numbers. Yet, even the
most aggressive setting (W as in Section 7.2.1, using LB/UB), the query
complexity of quantum enumeration on Kyber-512 essentially matches the
query complexity of Grover search on AES-128 in the same unbounded depth
setting, with the query-complexity of enumeration on Kyber-768 is greater
than that of Grover search on AES-192.

Cost estimation with MaxDepth restrictions.

We now consider the effect of depth restrictions on the cost of the attack.
Depth restrictions mean that we will need to use a combined classical-
quantum attack as described in Sec. 7.1.3 and 7.1.4, where classical enumer-
ation is run up to level k, as to create subsets {g1, . . . , g2y} ⊂ Zk. A “virtual”
root node v is added as “parent” of these, and quantum enumeration is run
on the resulting tree T(v). This process requires about 2y QRACM to store

estimating quantum enumeration attacks on kyber 129

Table 7.5: Summary of the values for the Jensen’s gap 2z at crossover points of our combined classical-quantum enumeration
attacks against Kyber and the cost of Grover’s search against AES (cf. [Jaq+20, Tables 10 and 12]). We remark that exact crossovers
happen at fractional values of z. In this table we round down threshold values of z. MaxDepth is abbreviated to MD. X/Y refers to
how E[|Zk+j |/|Zk|] is estimated for displayed level k (c.f. Section 7.3.2), Cost is as in Table 7.6.

less likely to be feasible more likely to be feasible

Crossover points when comparing Cost of Grover on AES against the total GCost (cf. Table 7.6) with …

…W as in Section 7.2.1 …W as in Section 7.2.2

MD Kyber LB/UB UB/UB LB/LB LB/UB UB/UB LB/LB

-512 z ≥ 0, k ≤ 25

Cost ≥ 263
z ≥ 20, k ≤ 11

Cost ≥ 2116
z ≥ 12, k ≤ 83

Cost ≥ 2115
z ≥ 0, k ≤ 27

Cost ≥ 294
z ≥ 36, k ≤ 22

Cost ≥ 2115
z ≥ 28, k ≤ 79

Cost ≥ 2115

-768 z ≥ 2, k ≤ 84

Cost ≥ 2179
z ≥ 61, k ≤ 33

Cost ≥ 2180
z ≥ 56, k ≤ 106

Cost ≥ 2179
z ≥ 17, k ≤ 73

Cost ≥ 2180
z > 64 z > 64

240

-1024 z ≥ 50, k ≤ 105

Cost ≥ 2242
z > 64 z > 64 z > 64 z > 64 z > 64

-512 z ≥ 0, k ≤ 26

Cost ≥ 263
z ≥ 20, k ≤ 9

Cost ≥ 292
z ≥ 12, k ≤ 64

Cost ≥ 291
z ≥ 0, k ≤ 26

Cost ≥ 275
z ≥ 36, k ≤ 5

Cost ≥ 292
z ≥ 28, k ≤ 54

Cost ≥ 291

-768 z ≥ 1, k ≤ 64

Cost ≥ 2155
z ≥ 61, k ≤ 26

Cost ≥ 2156
z ≥ 56, k ≤ 77

Cost ≥ 2155
z ≥ 17, k ≤ 67

Cost ≥ 2156
z > 64 z > 64

264

-1024 z ≥ 49, k ≤ 100

Cost ≥ 2220
z > 64 z > 64 z > 64 z > 64 z > 64

-512 z ≥ 0, k ≤ 26

Cost ≥ 263
z ≥ 15, k ≤ 1

Cost ≥ 282
z ≥ 7, k ≤ 40

Cost ≥ 282
z ≥ 0, k ≤ 26

Cost ≥ 275
z ≥ 40, k ≤ 1

Cost ≥ 282
z ≥ 31, k ≤ 40

Cost ≥ 282

-768 z ≥ 1, k ≤ 53

Cost ≥ 2124
z ≥ 61, k ≤ 8

Cost ≥ 2124
z ≥ 56, k ≤ 44

Cost ≥ 2123
z ≥ 19, k ≤ 43

Cost ≥ 2124
z > 64 z > 64

296

-1024 z ≥ 51, k ≤ 79

Cost ≥ 2187
z > 64 z > 64 z > 64 z > 64 z > 64

-512 z ≥ 0, k ≤ 26

Cost ≥ 263
z ≥ 15, k ≤ 1

Cost ≥ 282
z ≥ 7, k ≤ 40

Cost ≥ 282
z ≥ 0, k ≤ 26

Cost ≥ 275
z ≥ 40, k ≤ 1

Cost ≥ 282
z ≥ 31, k ≤ 40

Cost ≥ 282

-768 z ≥ 0, k ≤ 37

Cost ≥ 2113
z ≥ 59, k ≤ 3

Cost ≥ 2114
z ≥ 51, k ≤ 31

Cost ≥ 2114
z ≥ 24, k ≤ 37

Cost ≥ 2114
z > 64 z > 64

∞

-1024 z ≥ 59, k ≤ 33

Cost ≥ 2147
z > 64 z > 64 z > 64 z > 64 z > 64

-512 z ≥ 7, k = 0

Cost ≥ 282
z ≥ 15, k = 0

Cost ≥ 282
z ≥ 7, k = 0

Cost ≥ 282
z ≥ 32, k = 0

Cost ≥ 282
z ≥ 40, k = 0

Cost ≥ 282
z ≥ 32, k = 0

Cost ≥ 282

-768 z ≥ 51, k = 0

Cost ≥ 2114
z ≥ 56, k = 0

Cost ≥ 2114
z ≥ 51, k = 0

Cost ≥ 2114
z > 64 z > 64 z > 64∞k=0

-1024 z > 64 z > 64 z > 64 z > 64 z > 64 z > 64

the {gi}i≤2y , and is run on the extreme cylinder pruning enumeration tree
TM from Section 7.1.5.

To compute Equation (7.7) given a Jensen’s gap 2z, we minimize the
total cost of the combined classical-quantum enumeration with extreme
cylinder pruning usingM = 264 re-randomized bases and overall success
probability≈ 1 over 2y ≤ 264 and k ≤ n. For each set of parameters, we only
consider those where the depth of QPE(W) (cf. Equation (7.8)) is no larger
than MaxDepth. For every z ∈ {0, ..., 64}, we output (y, k) minimizing the

estimating quantum enumeration attacks on kyber 130

0 10 20 30 40 50 60
Log(Jensen's Gap) z

0

50

100

150

Lo
g z=0

Cost 64
k=26
y=37

z=0
Cost 64

k=26
y=37

Quasi-Sqrt(classical cost)
Expected cost of Grover on AES
Canonical bit security of Kyber
Expected cost of classical enumeration
Quantum GCost
Total GCost
Classical GCost
QRACM

(a) Cost estimation for Kyber-512.

0 10 20 30 40 50 60
Log(Jensen's Gap) z

0

50

100

150

200

250

300

Lo
g z=0

Cost 114
k=37
y=64

z=0
Cost 114

k=37
y=64

(b) Cost estimation for Kyber-768.

0 10 20 30 40 50 60
Log(Jensen's Gap) z

0
50

100
150
200
250
300
350
400
450
500

Lo
g

z=0
Cost 207

k=33
y=64

z=0
Cost 207

k=33
y=64

z=59
Cost 148

k=33
y=64

(c) Cost estimation for Kyber-1024.

Figure 7.7: Cost estimation for Kyber without MaxDepth restrictions with the instantiation for operatorW as in Section 7.2.1 and
with DF = 1, QD = 1, b = 1 (see Section 7.1), corresponding to the lower bound (LB/UB) for the Conjecture 3.

total cost. We report our results in Table 7.5, under the “MD = 240, 264, 296”
rows. First, we observe that attacks on Kyber-1024 appear unlikely to beat
key-search on AES-256 in all settings. The value of z required to reach an
attack costs on Kyber-512 and -768 smaller than those of Grover on AES is
relatively low when assuming the strict “LB/UB + query-based model forW”
setting (cf. Section 7.2.1). However, assuming the circuit-based model forW ,
immediately raises the requirements for a successful attack on Kyber-768 up
to z ≥ 17, suggesting a successful attack may not be too likely. This is likely
a fairer comparison, since in the “W as in Section 7.2.1” columns we are
anyway comparing query-complexity of enumeration versus gate-complexity
of Grover on AES. As for Kyber-512, while we cannot fully exclude attacks due
to the very conservative analysis made, we note that the estimated gate cost
of the attack significantly increases assuming the need for non-trivial circuits
for W (263 → 275–294), or that the pruning radii found via optimisation
cannot be improved (282–2116, c.f. the “UB/UB” columns). We note that the
cost of Kyber-512 is the same in the MaxDepth = 296 and MaxDepth =∞

estimating quantum enumeration attacks on kyber 131

[Bin+23] Bindel et al., Quantum Lattice Enu-
meration in Limited Depth

cases, since in either case the quantum depth budget is large enough to
fit the attack achieving the overall optimal classical-quantum enumeration
tradeoff.

We remark that for all attacks identified within z ≤ 64, we have k ≤ n/2.
This matches our analysis in Section 7.1.4 since as k → n/2, the cost of the
classical phase of combined classical-quantum enumeration would approach
the cost of fully classical enumeration, while introducing a further quantum
overhead.

Table 7.6: Legend for plots and tables reporting attack costs under MaxDepth constraint.

Exp. cost of Grover on AES
Expected GCost for AES key recovery [Jaq+20,

Tab. 12] with prob. ≈ 1

Quantum GCost
Expected combined cost of all quantum circuits
enumerating levels below k, cf. Equation (7.7)

Exp. cost of class. enum.
Lower bounds on the cost of enumeration with extreme

cylinder pruning [Aon+18]

Classical GCost
Expected # nodes (cf. Equation (7.5)) enumerated

classically up to level k
2128, 2192, 2256 Canonical bit security
Total GCost Classical cost + quantum cost

Quasi-Sqrt (class. cost)
Asymptotic runtime of quantum enumeration,

≈ (2y ·NM
k,n−k · (n− k))1/2

QRACM
Max. amount of quantum accessible classical memory,

constraint on 2y

2z Multiplicative Jensen’s Gap, cf. Def. 7.1.1
Cost Value of total GCost at this point
k Level up to which tree is enumerated classically
MaxDepth Constraint on T-Depth(QPE(W)), cf. Equation (7.8)

2y
subtrees rooted at level k combined under a single

FindMV call, cf. Sec. 7.1.4

An important difference between the bounded- and unbounded-depth
settings for combined classical-quantum enumeration is the dependency of
the total cost on the Jensen’s gap 2z . Indeed, while in the unbounded setting
the cost of the attack is simply proportional to 2−z, in the bounded setting
different values of MaxDepth and z imply different amounts of classical
precomputation.

Since we do not have a clear prediction of the exact value of z for different
enumeration tree distributions, we investigate how sensitive the total cost
of the attack is to small changes in z by plotting the predicted classical
and quantum gate costs and QRACM requirements as a function of z. In
Figure 7.8 we show the resulting plots for Kyber-1024 at MaxDepth = 240

and 296 in the query-based model as a representative example. Plots for
MaxDepth = 264, Kyber-512 and -768, and for the circuit-based model can
be found in [Bin+23, App. G]. Overall, costs appear to decrease smoothly
as z increases without major sudden changes. A peculiar phenomenon can
be observed, namely the optimal attack is not achieved when the two phases
of the attack are balanced. We will elaborate on this next.

estimating quantum enumeration attacks on kyber 132

[Bin+23] Bindel et al., Quantum Lattice Enu-
meration in Limited Depth

[GNR10] Gama, Nguyen, and Regev, “Lattice
Enumeration Using Extreme Pruning”

Unbalanced Classical and Quantum Cost. In Figure 7.8 as well as
in [Bin+23, App. G], the figures show a gap between the costs of the
classical and quantum phases, rather than having these be balanced. The
only parameter determining the classical cost is k. Since in our observed case
the classical cost is always smaller than the quantum one, the only option for
balancing the two would be by increasing k. Increasing k ↦→ k+1means that
the classical cost increases by an additive term Hk+1/2, while the quantum
cost and the quantum depth approximately change by a factor

√︂
n−k−1
n−k

Hk+1

Hk

and
√︂

n−k−1
n−k

Hk

Hk+1
, respectively. How this affects the quantum cost overall

will depend on whether Hk+1/Hk is larger or smaller than 1, as well as
whether a different value of y is chosen as to keep using exactly MaxDepth
quantum depth during the attack. From Table 7.5, it appears that the optimal
attacks we find are in the k < n/2 regime where Hk+1/Hk > 1 [GNR10],
meaning that increasing k may increase both classical and quantum costs,
which is undesirable. Due to the complexity of an analytic analysis, we
believe the safer approach is looking for the optimal attack computationally.
It would then appear that the lowest classical plus quantum cost is achieved
with unbalanced quantum and classical costs within the constraints we
consider.

Experimental Results beyond lower bounds for QD(W) and WQ(T ,W).

We explore more likely values for QD(W) and WQ(T ,W) in Section 7.1.2
and re-estimate the costs presented in this section, resulting in Table 7.7.
Overall, comparing the results Table 7.7 with Table 7.5 it would appear
that the impact of using more likely values over the query-model numbers
in Table 7.5 is smaller than the impact of moving from a query-based to a
circuit-based model forW .

Further, we replicate the analysis performed in Section 7.3.2, estimating
the cost of a combined classical-quantum attack as described in Sec. 7.1.3
and 7.1.4. In Tables B.3 and B.4 we summarize the values for the Jensen’s
gap 2z at crossover points of our combined classical-quantum enumeration
attacks against the quasi-square-root and the canonical 128, 192, 256 bit
security of Kyber. The tables corresponds to attacks in the settings forW
as in Section 7.2.1 and Section 7.2.2 with DF and QD as in Section 7.1.2,
C = 2 (as this is the most conservative value such that n log C > 0) b = 1/64

in WQ(T ,W) and ε = 20.

estimating quantum enumeration attacks on kyber 133

0 10 20 30 40 50 60
Log(Jensen's Gap) z

0
50

100
150
200
250
300
350
400
450
500

Lo
g

z=0
Cost 365

k=179
y=0

z=0
Cost 365

k=179
y=0

z=41
Cost 262

k=115
y=0

z=44
Cost 256

k=112
y=1

z=50
Cost 243

k=105
y=1

Quasi-Sqrt(classical cost)
Expected cost of Grover on AES
Canonical bit security of Kyber
Expected cost of classical enumeration
Quantum GCost
Total GCost
Classical GCost
QRACM

(a) Kyber-1024, MaxDepth = 240

0 10 20 30 40 50 60
Log(Jensen's Gap) z

0
50

100
150
200
250
300
350
400
450
500

Lo
g

z=0
Cost 325

k=139
y=2

z=0
Cost 325

k=139
y=2

z=28
Cost 263

k=105
y=5

z=32
Cost 255

k=100
y=4

z=49
Cost 221

k=100
y=38

(b) Kyber-1024, MaxDepth = 264

0 10 20 30 40 50 60
Log(Jensen's Gap) z

0
50

100
150
200
250
300
350
400
450
500

Lo
g

z=0
Cost 287

k=100
y=4

z=0
Cost 287

k=100
y=4

z=12
Cost 263

k=100
y=28

z=16
Cost 255

k=100
y=36

z=51
Cost 188

k=79
y=64

(c) Kyber-1024, MaxDepth = 296

Figure 7.8: Cost estimation for Kyber-1024 under MaxDepthrestrictions with the instantiation for operatorW as in Section 7.2.1
corresponding to the lower bound (LB/UB) for Conjecture 3, cf. Table 7.6 for an expanded legend.

estimating quantum enumeration attacks on kyber 134

Table 7.7: Summary of the values for the Jensen’s gap 2z at crossover points of our combined classical-quantum enumeration
attacks against Kyber and the cost of Grover’s search against AES (cf. [Jaq+20, Tables 10 and 12]). We remark that exact crossovers
happen at fractional values of z. In this table we round down threshold values of z. MaxDepth is abbreviated to MD. Cost is as in
Table 7.6. The results are estimated from the bounds C = 2, ε = 20, b = 1/64.

less likely to be feasible more likely to be feasible

Crossover points when comparing Grover on AES against logE[Quantum GCost] (cf. Equation (7.7)) with …

…W as in Section 7.2.1 …W as in Section 7.2.2

MD Kyber LB/UB UB/UB LB/LB LB/UB UB/UB LB/LB

-512 z ≥ 0, k ≤ 25

Cost ≥ 290
z ≥ 34, k ≤ 11

Cost ≥ 2116
z ≥ 26, k ≤ 83

Cost ≥ 2115
z ≥ 4, k ≤ 31

Cost ≥ 2115
z ≥ 50, k ≤ 19

Cost ≥ 2115
z ≥ 41, k ≤ 79

Cost ≥ 2116

-768 z ≥ 15, k ≤ 75

Cost ≥ 2180
z > 64 z > 64

z ≥ 32, k ≤ 67

Cost ≥ 2179
z > 64 z > 64

240

-1024 z ≥ 64, k ≤ 100

Cost ≥ 2244
z > 64 z > 64 z > 64 z > 64 z > 64

-512 z ≥ 0, k ≤ 26

Cost ≥ 272
z ≥ 34, k ≤ 4

Cost ≥ 292
z ≥ 26, k ≤ 55

Cost ≥ 291
z ≥ 5, k ≤ 26

Cost ≥ 292
z ≥ 52, k ≤ 1

Cost ≥ 292
z ≥ 43, k ≤ 40

Cost ≥ 292

-768 z ≥ 15, k ≤ 64

Cost ≥ 2156
z > 64 z > 64

z ≥ 32, k ≤ 67

Cost ≥ 2155
z > 64 z > 64

264

-1024 z ≥ 64, k ≤ 100

Cost ≥ 2220
z > 64 z > 64 z > 64 z > 64 z > 64

-512 z ≥ 0, k ≤ 26

Cost ≥ 272
z ≥ 37, k ≤ 1

Cost ≥ 282
z ≥ 29, k ≤ 40

Cost ≥ 282
z ≥ 15, k ≤ 26

Cost ≥ 282
z ≥ 62, k ≤ 1

Cost ≥ 282
z ≥ 53, k ≤ 40

Cost ≥ 282

-768 z ≥ 17, k ≤ 44

Cost ≥ 2123
z > 64 z > 64

z ≥ 37, k ≤ 37

Cost ≥ 2124
z > 64 z > 64

296

-1024 z > 64 z > 64 z > 64 z > 64 z > 64 z > 64

-512 z ≥ 0, k ≤ 26

Cost ≥ 272
z ≥ 37, k ≤ 1

Cost ≥ 282
z ≥ 29, k ≤ 40

Cost ≥ 282
z ≥ 15, k ≤ 26

Cost ≥ 282
z ≥ 62, k ≤ 1

Cost ≥ 282
z ≥ 53, k ≤ 40

Cost ≥ 282

-768 z ≥ 22, k ≤ 37

Cost ≥ 2114
z > 64 z > 64

z ≥ 47, k ≤ 37

Cost ≥ 2114
z > 64 z > 64∞

-1024 z > 64 z > 64 z > 64 z > 64 z > 64 z > 64

-512 z ≥ 29, k = 0

Cost ≥ 282
z ≥ 37, k = 0

Cost ≥ 282
z ≥ 29, k = 0

Cost ≥ 282
z ≥ 54, k = 0

Cost ≥ 282
z ≥ 62, k = 0

Cost ≥ 282
z ≥ 54, k = 0

Cost ≥ 282

-768 z > 64 z > 64 z > 64 z > 64 z > 64 z > 64∞k=0

-1024 z > 64 z > 64 z > 64 z > 64 z > 64 z > 64

Conclusion

We have demonstrated significant vulnerabilities and attack vectors within
candidates of the NIST post-quantum competition, advancing both the theo-
retical and practical understanding of their security and associated adversar-
ial costs.

Firstly, we have presented an attack that exploits decryption failures in
Mersenne number cryptosystems, effectively compromising IND-CCA secu-
rity and even enabling the extraction of the secret-key. In particular, we
showed that failing ciphertexts can be used to estimate the bit positions of the
ones in the secret. We presented an attack leveraging those failures and used
our estimation to break the IND-CCA security of the Ramstake cryptosystem.
The analysis is based on two heuristic arguments which were supported by
empirical evaluations and allowed to derive a maximum likelihood estimator
for the private key. Based on the estimator we derive information about the
secret to perform a Slice-and-Dice attack with significantly reduced complex-
ity. Our implementation demonstrates the feasibility of the attack and shows
that we can reconstruct the secret-key with approximately 274 queries to the
decryption oracle and about 246 iterations of Grover’s algorithm.

Secondly, our research has identified the optimal positions for targeting
SPHINCS+ with generic quantum preimage attacks, highlighting critical
points of interest in the hypertree. We proposed and reviewed multiple points
of attack in the SPHINCS+ signature scheme based on applying Grover’s
algorithm to find preimages. An estimate of the resources required to carry
out the most promising attack on a fault tolerant quantum computer is
given. Our attack, that forges a signature with 1.55 ·2101 logical-qubit-sycles,
improves over the previously best known attack on SPHINCS+-128-Haraka.
Following the suggestion by NIST to review the security in terms of a maximal
depth for quantum circuits, it is clear that for a depth of 296 the attack can
be implemented without any further constraints and would be more efficient
than the classical counter part. For a depth of 240 and 264 the overhead
induced by error correction needs to be reevaluated and optimized to the
respective depth.

Lastly, we have explored and established meaningful lower bounds for
quantum lattice enumerations, providing valuable insights into the com-
putational efforts required by adversaries. We introduced a new quantum
algorithm that combines classical and quantum enumeration to circumvent
likely restrictions to serial quantum computation, developed a heuristic anal-
ysis of its cost in terms of classical and quantum gates and quantum depth,
provided lower bounds for the cost, and studied its hypothetical impact on
the cryptanalysis of Kyber in various settings as a case-study. On the way,
we produced various experimental results on the distribution of subtrees of
enumeration trees, and on the hidden constants of quantum enumeration
algorithms. From our estimates on Kyber, we see that the asymptotic square-
root speedup suggested by previous analysis of quantum enumeration with
extreme cylinder pruning are not necessarily guaranteed under a MaxDepth
constraint. Rather, achieving asymptotic speedups and “breaks” depends 135

estimating quantum enumeration attacks on kyber 136

[Bai+23] Bai et al., “Concrete Analysis of
Quantum Lattice Enumeration”

[Jaq+20] Jaques et al., “Implementing
Grover Oracles for Quantum Key Search on
AES and LowMC”

on a vast array of hypothetical developments, such as cheap quantum com-
putation and QRACM, better pruning radii and small quantum circuits for
floating point arithmetic, and on known unknowns such as the Jensen’s
gap for the distribution of enumeration subtree sizes. While we can say
with some confidence that quantum enumeration does not seem to threat
parameters in the Kyber-1024 regime, the picture is less clear for smaller
schemes. Yet, we stress again the very conservative nature of our analy-
sis. Requiring non-trivial circuits forW such as those in [Bai+23] would
likely imply security with respect to AES for Kyber-768 and large absolute
gate-costs for attacks against Kyber-512. We believe that the take-home
message of this case-study is that, as analogously noticed in the key-search
setting [Jaq+20], imposing MaxDepth limitations to quantum backtracking
appears to present a significant obstacle towards leveraging this technique
for lattice cryptanalysis.

The results highlight vulnerabilities in certain post-quantum crypto-
graphic schemes, demonstrating how and at what cost adversaries may
exploit the structure of the schemes. At the same time, the findings indicate
that attacks on hash-based signature schemes such as SPHINCS+ as well as
lattice-enumeration based attacks on key encapsulation mechanism are far
from practical. Such attacks are limited by the high computational resources
required, making attacks even with quantum computers infeasible. Under-
standing implications from these challenges allows to further advance the
field of cryptography, resulting in more robust constructions.

Part III

QUANTUM-SECURE PROTOCOLS

11And, of course, other assumptions that are
outside the focus of this manuscript.

[Nat17] National Institute for Standards and
Technology, Post-Quantum Cryptography Call
for Proposals

[GE21] Gidney and Ekerå, “How to factor
2048 bit RSA integers in 8 hours using 20
million noisy qubits”

Summary

Part II demonstrates how providing concrete resources to an adversary affects
the security of post-quantum cryptography. Our results, for example the
IND-CCA attack of Chapter 5, show that even if intractability assumptions
remain computationally hard, some protocol designs have significant security
flaws. At the same time, it appears that secure post-quantum cryptography
can be achieved. An example are signatures on the basis of cryptographic
hash functions (cf. Chapter 6), or key encapsulation mechanisms based on
lattice assumptions11 (cf. Chapter 7). While the results from Part II sug-
gest that certain cryptographic algorithms may have lower security margins
than expected, strong security properties can be achieved when instantiated
correctly. As such, we now move on to incorporate post-quantum secure
schemes in higher level protocols, possibly exchanging the existing conven-
tionally secure cryptography. We begin by assuming that post-quantum
secure algorithms exists, specifically signature schemes and key encapsula-
tion mechanisms, and then investigate the impact of deploying these in a
higher level protocol.

The adoption of quantum secure schemes comes with formidable chal-
lenges, as this necessitates the overhaul of existing protocols and the assess-
ment of the security provided by quantum-secure intractability assumptions.
For example, a transformation from classically to post-quantum security often
entails to exchange the existing Discrete Logarithm (DLOG)-based Diffie–
Hellman key-exchange with a post-quantum secure key encapsulation mecha-
nism, particularly, one of the KEM candidates of the NIST post-quantum com-
petition [Nat17]. However, the two components, Diffie–Hellman (DH) key
exchange and KEM, can not be readily switched in common key agreement
protocols without invalidating the security proofs — potentially resulting in
loosing security properties. It is natural to ask...

...what security properties remain intact when exchanging a Diffie–
Hellman key exchange for a KEM?

We answer this question for the L-band Digital Aeronautic Communication
System (LDACS) protocol in Chapter 9.

In addition to reviewing the security of post-quantum cryptography Part II
also strengthens the understanding of the cost of implementing quantum
algorithms. In particular, Chapters 6 and 7 show that implementing quantum
algorithms to attack cryptographic schemes can require an enormous amount
of resources. This becomes even more apparent when imposing real-world
constraints, such as quantum error correction, or a limit on the time that a
quantum circuit can remain coherent. Unsurprisingly, attacking convention-
ally secure cryptography, such as factorization or discrete-logarithm based
systems face a similar quantum computational overhead. While research
suggests [GE21] that quantum computers capable of performing such attacks
on conventional cryptography may be in reach in the coming decades, it also

139

summary 140

12Frankly, I have not found any quotable
sources for this.

[Int21] International Civil Aviation Organi-
zation (ICAO), ICAO - ANNEX 10 VOL III AMD
91 Aeronautical Telecommunications Volume
III - Communications Systems (Part I - Digital
Data Communication Systems; Part II - Voice
Communication Systems)

[TMM24b] Tiepelt, Martin, and Mäurer,
“Post-Quantum Ready Key Agreement for
Aviation”

[Cry19] Crypto Forum Research Group,
CFRG PAKE Standardization Process

[Tho19] Thomas, ”Re: [Cfrg] Proposed PAKE
Selection Process”

appears that such computation would be very expensive. For instance, com-
mercially available quantum computers that can factor numbers such as 21 or
35 are in a price range of millions12 of Euros. While such costs are expected
to come down, if quantum computers are ever powerful enough for practical
computation and manufactured for a larger market, it seems reasonable,
that in the coming decades quantum computing remains costly. This raises
the question of whether there are other ways to protect ourselves against
quantum threats without having to replace all cryptographic primitives.

What security against quantum adversaries can be achieved with-
out post-quantum cryptography?

With the premise that quantum computation is possible, but remains
expensive, surprisingly, not all protocols require a replacement of the un-
derlying encryption schemes. For example, PAKE protocols can achieve the
quantum-annoying property. That means, that the quantum resources that
an adversary has to invest to break security of a protocol scales with number
of password guesses, i. e., with a parameter that can be increased for more
security in these schemes.

In support of addressing these questions, we first review computational
security models for key agreement protocols in Chapter 8.

Contribution 4. To investigate the impact of deploying post-quantum cryp-
tography in higher level protocols we analyze the LDACS protocol, which is
designed to secure the civil aviation communication over the coming decades.
The protocol features the possibility to secure the communication with ei-
ther classically-secure, or post-quantum public-key cryptography. While
the protocol is currently under standardization by the International Civil
Aviation Organization [Int21], the modifications to the deployed protocol
to enable the use of KEMs have not been analyzed formally, thus providing
no guarantee that the desired security properties, such as entity and key
authentication, hold with these new premises.

In Chapter 9, we investigate which security notions are preserved when
the protocol is instantiated with (quantum-secure) key encapsulation mech-
anisms. We provide precise, explicit predicate based definitions of various
security notions along with a detailed proof of each property. As such, we
can show that the key-exchange of the LDACS protocol preserves its most im-
portant security properties, particularly entity authentication, providing the
communication partner with the assurance that they talk to their intended
peer, and key authentication, promising that (only) the two intended peers
know the exchanged key. We prove this both in a computational “pen-and-
paper” proof, as well as an automated symbolic-based proof system, which
can be reproduced. The chapter is based on [TMM24b].

Contribution 5. The phenomena of quantum-annoyingness was first
observed during the CFRG PAKE standardization process [Cry19] in 2019,
where it was found [Tho19] for one of the DDH-based candidates, that even
if an attacker could solve discrete logarithms, they could not immediately
recover the password. Instead, an attacker seemed to have to compute a
DLOG for each guess of the password even during an offline dictionary attack:

https://github.com/mtiepelt/ldacs-make-symbolic-tamarin

summary 141

[TES23b] Tiepelt, Eaton, and Stebila,
“Making an Asymmetric PAKE Quantum-
Annoying by Hiding Group Elements”

this property was named “quantum-annoying”. If solving such a problem
remains reasonably expensive, then a moderate level of security can still
be achieved. While this does not give full quantum resistance, it allows to
scale the cost of a quantum adversary with the entropy of the used password,
potentially making quantum attacks substantially more expensive.

In Chapter 10, we show how to leverage this property in the setting
of asymmetric PAKEs. The content of this chapter is based on [TES23b],
where we proposed an augmentation to an existing PAKE protocol. While
the original protocol is susceptible to a quantum attacker solving a single
discrete logarithm, after our augmentation, we prove that an adversary has
to solve a discrete logarithm for every password guess — thus achieving
quantum-annoying-ness — while providing fall-back to the security of the
DDH assumption.

Parts of this chapter have been taken ver-
batim from our publications, i. e., [TES23b;
TES23a; TMM24b; TMM24a].

[Brz+11] Brzuska et al., “Composability of
bellare-rogaway key exchange protocols”

[SFW19] Saint Guilhem, Fischlin, andWarin-
schi, Authentication in Key-Exchange: Defini-
tions, Relations and Composition

[SFW20] Saint Guilhem, Fischlin, andWarin-
schi, “Authentication in Key-Exchange: Defi-
nitions, Relations and Composition”

8
Security Models for Authenticated Key
Exchange

This chapter reviews security models for authenticated key exchange that
allow to prove desirable properties formally. This first Section 8.1 describes
the model and Section 8.2 defines the properties used in Chapter 9 to prove
the security for the aviation protocol. The last Sec. 8.3 and 8.4 recalls
the security model of password authenticated key exchange in support of
Chapter 10.

8.1 computational security model

We consider game-based security for authenticated key exchange in the
Bellare-Rogaway Model [Brz+11] as formalized by [SFW19], the description
of which features precise notation using predicates with explicit security
properties. A short version of [SFW19] was published as [SFW20]. However,
we refer to the full version as we believe this to be more accessible. We
closely follow [SFW19, Sec. 2] to describe the model and its parameters.

Setup: Identities and Protocol Executions. The security model is
defined over a set I ⊂ N of parties. Each party has a unique party identifier
i, j ∈ I . The total number of parties, n = |I |, is fixed a priori. The parties
are either an initiator I, or a responder R, i. e., I,R ∈ I .

The set of authenticating parties is S . We consider the case of mutual
authentication for all parties, consequently we have S = I . We work in the
pre-specified peer model, which means, that each party is aware of their own
identifier, and also knows their intended partner’s unique identifier, which is
also called the pid.

These parties engage in a protocol Π = (key-generation,Π), defined by
an initial key-generation as well an algorithm Π corresponding to the locally
executed procedure of each party. The execution of key-generation is not
part of the proof framework and not considered further. Each individual
execution of a protocol by an entity i ∈ I is called a local session, associated
with a local session ℓ = (i, j, k) where k denotes that this is the k-th session
between party i and party j, where j is the intended communication partner.
We refer to i as ℓ.id and to j as ℓ.pid. The total number l of local sessions is
bound a priori, such that k ≤ l.

143

computational security model 144

[SFW19] Saint Guilhem, Fischlin, andWarin-
schi, Authentication in Key-Exchange: Defini-
tions, Relations and Composition

Game States and Bookkeeping. The security of a protocol Π is defined
via an experiment called a game, where the adversary engages in protocol
executions and adaptively interacts with or corrupts parties. [SFW19] intro-
duce five lists to track the individual states of protocol executions and the
game.

1. The list SST of protocol-related session states stores for each local
session ℓ = (i, j, k) a signature key pair (vksigi , sk

sig
i) of party i as well

as their intended partner’s verification key vksigj . The list further stores
a set of variables:

• accept ∈ {true, false,⊥} in initialized to ⊥ and is set when the
session terminates, meaning the party does not receive or send
any further messages.

• The session identifier sid and the session-key K.

• The variables kcid, ecid ∈ {0, 1}∗ ∪⊥, which are initialized to ⊥,
and set as soon as the local session accepts. The variables are set
during a session and then remain invariant for the remainder of
the session. The kcid’s purpose is to unambiguously determine
the value of the session key before the session accepts while the
ecid determines the value of the session identifier.

• The model features a key confirmation flag kconf ∈
{none, almost, full}, denoting which form of confirmation should
be achieved.

2. The list LST of game-related local session states corresponds to how
the adversary interacts with the sessions throughout the game. For
each session, it stores whether the owner and peer of a session are
honest or corrupted, δownr, δpeer ∈ {honest, corrupt}, and similarly the
state of a session δsess ∈ {fresh, revealed}. Parties and sessions are
honest and fresh by default, and may change their state depending on
the adversary’s interaction.

3. The list corresponding to the game execution state EST contains in-
formation, {(i, vksigi , sk

sig
i , δi)}i, denoting which parties have been cor-

rupted (independently of sessions).

4. LSID is the list of valid local session identifiers.

5. The list MST holds information related to specific security notions.

8.1.1 Security Goal: Authentication

Experiment and Adversarial Interaction. Security is defined via an
experiment where an adversary interacts with a game. In the setting of
quantum-secure communication the adversary A is a quantum polynomial-
time algorithm which interacts through classical queries with the game. The
set of all queries is Q = {Send,Reveal,Corrupt}. On input Send(ℓ,m),
the game processesΠ on m on behalf of local session ℓ, and returns the result
to the adversary. On input Reveal(ℓ), the game sets ℓ.δsess to revealed, and
returns ℓ.K to the adversary. On input Corrupt(i), the entity i is marked

computational security model 145

[SFW19] Saint Guilhem, Fischlin, andWarin-
schi, Authentication in Key-Exchange: Defini-
tions, Relations and Composition

as corrupt in variable δi. Then, for any session owned by that entity (i, ·, ·),
and any session where it is listed as a peer (·, i, ·), the entity is marked as
corrupt, i. e., the game sets δownr = corrupt (respectively for δpeer). Finally,
the secret signing key sksigi is returned to the adversary.

The game returns responses to the adversary according to an algorithm
χ, which evaluates a query q ∈ Q and the game state. [SFW19] further
allow the adversary to submit invalid queries, determined by a predicate
Valid, for which χ is not executed. We note that such queries are not relevant
in our setting. The state of each game G comprises the five lists from the
previous paragraph.

The experiment then consists of three phases: In a first phase of the
experiment, key pairs for all entities are generated and variables initialized
as previously defined. In the second phase, the adversary may interact
with the sessions and parties by submitting queries q to the game, which
are processed by χ. In the last phase, after the adversary send all their
queries and terminated, the game evaluates a predicate on the state b ←
P (SST, LST, EST, LSID,MST) and outputs the bit b ∈ {0, 1}. The adversary
wins the game, if b = 0.

Quantification. With this setup, a security notion is fully defined by a
predicate P . A protocol achieves a security property if for all polynomial-
time adversaries A the predicate P evaluates to 1 except with negligible
probability, i. e.,

AdvGA,Π,I,S = P
[︁
ExpGA,Π,I,S(1

λ) = 0
]︁
∈ negl ,

where ExpGA,Π,I,S corresponds to running the gameGwith protocolΠ, parties
I and authenticating parties S against the adversary A. We note that for
the remaining paper we only write “adversary” instead of “polynomial-time
adversary” for simplification, and security holds against quantum polynomial-
time adversaries if the respective components are post-quantum secure.

8.1.2 Security Goal: Secrecy

Experiment and Adversarial Interaction. To define a notion for secrecy
via the predicate BRSec, [SFW19, Sec. 5] provide a modified game GBRSec,
where the adversary’s goal is to distinguish a real and a random session key.
The modified game state includes EST, SST, LST. The state MST includes
two additional bits and a challenge session. The bit btest determines whether
the adversary is provided with a real key from a session, or whether they are
provided with a random key. The bit bguess will hold the adversary’s guess.
The challenge session ℓtest will correspond to the adversary’s choice of which
session to test. To set these states, the game provides two additional queries
to the adversary. On input Test(ℓ), the game sets the test session ℓtest ← ℓ

and returns K = ℓ.K if btest = 1, or a random key K from the key space if
btest = 0. On input Guess(b), the bit bguess ← b is updated. Additionally, the
game restricts the adversary to submit only a single Test query. The BRSec
predicate evaluates to the bit bguess as in Definition 8.2.12.

predicates for authenticated key exchange 146

[SFW19] Saint Guilhem, Fischlin, andWarin-
schi, Authentication in Key-Exchange: Defini-
tions, Relations and Composition

Quantification. Let Gbtest=b
BRSec denote the BR-secrecy game during which

btest has the value b. Due to the distinguishing nature of the BR-secrecy game,
the adversarial advantage is defined as

AdvGBRSec
A,Π,I,I(1

λ) :=

⃓⃓⃓⃓
P
[︃
ExpG

btest=0
BRSec

A,Π,I,I(1
λ) = 1

]︃
− P

[︃
ExpG

btest=1
BRSec

A,Π,I,I(1
λ) = 1

]︃⃓⃓⃓⃓
.

8.2 predicates for authenticated key exchange

We recall the definitions of the various security properties and the predicates
introduced by [SFW19] with the simplifications relevant to this manuscript.
Note that all predicates are quantified over the list of valid local session
identifiers, i. e., ∀ℓ ∈ LSID. All predicates are to be used in conjunction with
the game as defined in Section 8.1.1 unless otherwise stated. The predicates
SameKey, SameKCID, SameECID and Partnered are defined to enable the
readability of the subsequent predicates:

Definition 8.2.1 (SameKey, abridged from [SFW19, Def. 2.3]).
SameKey(ℓ, ℓ′)⇔ ℓ.K = ℓ′.K ̸= ⊥ for distinct sessions ℓ, ℓ′.
The definitions for SameKCID and SameECID are analogous.

Definition 8.2.2 (Partnered, abridged from [SFW19, Def. 2.1]).
Partnered(ℓ, ℓ′)⇔ ℓ ̸= ℓ′ and ℓ.sid = ℓ′.sid ̸= ⊥.

The Match property promises, intuitively, that two parties engaging with
the same session identifier also derive the same key K and kcid, and that
the latter guarantees the computation of identical keys. Additionally, the
property promises that each local session is partnered with at most one other
local session.

Definition 8.2.3 (Match predicate, abridged from [SFW19, Def. 2.3]).

Match⇔ ∀ℓ, ℓ′, ℓ′′ : (Partnered(ℓ, ℓ′) ∧ ℓ.K ̸= ⊥ ̸= ℓ′.K) =⇒ SameKey(ℓ, ℓ′)

∧ (Partnered(ℓ, ℓ′) ∧ ℓ.kcid ̸= ⊥ ̸= ℓ′.kcid) =⇒ SameKCID(ℓ, ℓ′)

∧ (Partnered(ℓ, ℓ′) ∧ Partnered(ℓ, ℓ′′)) =⇒ ℓ′ = ℓ′′

∧ (SameKCID(ℓ, ℓ′) ∧ ℓ.K ̸= ⊥ ̸= ℓ′.K) =⇒ SameKey(ℓ, ℓ′)

Entity and Key Authentication. Implicit entity authentication holds, if
any party is guaranteed that for each of its sessions, only its intended partner
has a matching sid.

Definition 8.2.4 (Implicit Entity Authentication, abridged from [SFW19,
Def. 3.1]).

iEntAuth⇔ ∀ℓ that accept : (∀ℓ′ : Partnered(ℓ, ℓ′) : ℓ′.id = ℓ.pid)

Entity confirmation improves this by providing assurance that there exists
another session with the same sid (“full”), or the same ecid (“almost full”),
where for the latter matching ecids eventually result in the same sid if the
respective session terminates successfully.

Definition 8.2.5 (Full Entity Confirmation, abridged from [SFW19, Sec.
9.1]).

fEntConf⇔ ∀ℓ that accept ∧ ℓ.δpeer = honest : ∃ℓ′ : Partnered(ℓ, ℓ′)

predicates for authenticated key exchange 147

[SFW19] Saint Guilhem, Fischlin, andWarin-
schi, Authentication in Key-Exchange: Defini-
tions, Relations and Composition

Definition 8.2.6 (Almost-Full Entity Confirmation, abridged from [SFW19,
Sec. 9.1]).

afEntConf⇔ ∀ ℓ that accept ∧ ℓ.δpeer = honest : ∃ℓ′ :
(SameECID(ℓ, ℓ′) ∧ (ℓ′.sid ̸= ⊥ =⇒ Partnered(ℓ, ℓ′)))

“Almost” full key confirmation promises, that parties engaging with a
honest peer have assurance, that their peer derives the same key. We note
that “full” key confirmation is implied by another, stronger predicates later
on, and thus not explicitly defined.

Definition 8.2.7 (Almost-Full Key Confirmation, abridged from [SFW19, Def.
3.4]).

afKeyConf⇔ ∀ℓ that accept ∧ ℓ.δpeer = honest :

∃ℓ′ : SameKCID(ℓ, ℓ′) ∧ ((ℓ′.K ̸= ⊥)⇒ SameKey(ℓ, ℓ′))

The following four primary security notions of [SFW19] are the main
terms in our Theorem 3 of Chapter 9. (Almost) Full explicit entity authen-
tication promises that for honest, authenticating parties only the intended
partner has a matching sid and there exists at least one such session with
matching sid (respectively ecid for “almost”).

Definition 8.2.8 (Full Explicit Entity Authentication, abridged from [SFW19,
Sec. 9.1]).

fexEntAuth⇔ ∀ℓ that accept : (∀ℓ′ : Partnered(ℓ, ℓ′) : ℓ′.id = ℓ.pid)

∧ (ℓ.δpeer = honest =⇒ ∃ℓ′ : Partnered(ℓ, ℓ′))

Definition 8.2.9 (Almost-Full Explicit Entity Authentication, abridged from
[SFW19, Sec. 9.1]).

afexEntAuth⇔ ∀ℓ that accept : (∀ℓ′ : Partnered(ℓ, ℓ′) : ℓ′.id = ℓ.pid)

∧(ℓ.δpeer = honest =⇒ ∃ℓ′ : SameECID(ℓ, ℓ′)
∧(ℓ′.sid ̸= ⊥ =⇒ Partnered(ℓ, ℓ′)))

Similarly, (almost) full explicit key authentication promises that only the
intended partner has sessions with matching key and that at least one such
session with matching key exists (respectively kcid).

Definition 8.2.10 (Full Explicit Key Authentication, abridged from [SFW19,
Def. 3.5]).

fexKeyAuth⇔ ∀ℓ that accept : (∀ℓ′ : SameKey(ℓ, ℓ′) : ℓ′.id = ℓ.pid)

∧ (ℓ.δpeer = honest =⇒ ∃ℓ′ such that SameKey(ℓ, ℓ′))

Definition 8.2.11 (Almost-Full Explicit Key Authentication, abridged from
[SFW19, Def. 3.6]).

afexKeyAuth⇔∀ℓ that accept : (∀ℓ′ : SameKey(ℓ, ℓ′) : ℓ′.id = ℓ.pid)

∧(ℓ.δpeer = honest =⇒ ∃ℓ′ : SameKCID(ℓ, ℓ′)
∧ (ℓ′.K ̸= ⊥ =⇒ SameKey(ℓ, ℓ′)))

Finally, we define the predicate to achieve secrecy as used in the game in
Section 8.1.2:

security of password authenticated key exchange 148

[SFW19] Saint Guilhem, Fischlin, andWarin-
schi, Authentication in Key-Exchange: Defini-
tions, Relations and Composition

[BPR00] Bellare, Pointcheval, and Rogaway,
“Authenticated Key Exchange Secure against
Dictionary Attacks”

[Brz+11] Brzuska et al., “Composability of
bellare-rogaway key exchange protocols”

Definition 8.2.12 (BR-Secrecy, abridged from [SFW19, Def. 5.1, 5.2]). The
BRSec predicate is defined as follows:

if MST.ℓtest ̸= ⊥ ∧ ℓ.δownr = ℓ.δpeer = honest ∧ ℓ.δsess = fresh

∧ ∀ℓ′ ∈ LST : Partnered(ℓ, ℓ′)⇒ ℓ′.δsess = fresh

then BRSec← MST.bguess
else BRSec← 0

Remark 13. In [SFW19, Def. 5.2], the BRSec predicate has value ⊥ in some
cases. Since the adversarial advantage does not distinguish whether BRSec has
the value 0 or ⊥, we omit this detail.

8.3 security of password authenticated key exchange

We consider the model of Bellare, Pointcheval and Rogaway (BPR00)
[BPR00] for security of an asymmetric password-authenticated key exchange
protocol, where the notation is unified with the model of [Brz+11] from
Section 8.1. The setting is similar to that of authenticated key exchange (cf.
Section 8.1) with modification to the identities, game states, queries and
bookkeeping:

There are two distinct sets of parties, the clients C, and the servers S,
Each such party takes as inputs a unique identifier and a long-term secret. The
client’s long-term secret is a low entropy password π; the server’s long-term
secrets are the credentials credS [C], that are established during a Registration
phase which is not considered in detail. More formally:

1. The list SST of protocol-related session states stores for each local ses-
sion ℓ = (i, j, k) a password π of party C, or the credentials credS [C]
for a party S. Note that the identifier j corresponds to the partner
identifier in the original BPR00 model [BPR00]. Further, it stores a
set of variables similar to the setting in Section 8.1: A variable accept,
session identifier sid and session-key K ∈ {0, 1}∗ ∪ ⊥, the latter of
which are initialized to ⊥, and set as soon as the local session accepts.
The model does not include flags denoting any form of confirmation
that should be achieved.

2. The lists LST, LSID and MST are identical to the setting in Section 8.1.

3. The list corresponding to the game execution state EST contains in-
formation, {(i, π, credS [C], δi)}i, denoting which parties have been
corrupted (independently of sessions).

Quantum-Annoying Additionally to BPR00 model, we consider the notion
of quantum-annoying’ness in the generic group model which we call QA-BPR:
A protocol is said to be quantum annoying, if a classical adversary who has
the additional ability to solve discrete logarithms can break the protocol
only by solving a distinct discrete logarithm for each guess of the password.
While not fully resistant to attacks by quantum computers, a quantum-
annoying protocol could offer some resistance to quantum adversaries for
whom discrete logarithms are relatively expensive.

security of password authenticated key exchange 149

[Roe+17] Roetteler et al., “Quantum Re-
source Estimates for Computing Elliptic
Curve Discrete Logarithms”

[GM19] Gheorghiu and Mosca, Benchmark-
ing the quantum cryptanalysis of symmet-
ric, public-key and hash-based cryptographic
schemes

[GE21] Gidney and Ekerå, “How to factor
2048 bit RSA integers in 8 hours using 20
million noisy qubits”

[PV23] Parker and Vermeer, Estimating the
Energy Requirements to Operate a Cryptana-
lytically Relevant Quantum Computer

1In the setting of PAKE’s this is known as
weak corruption.

In this setting, the adversary gets access to the group operation ◦ and a
discrete logarithm oracle Dlog. In Section 8.4 we describe how the generic
group model can be utilized to quantify queries to the discrete logarithm
oracle.

Remark 14. We wish to emphasize for the reader that the “quantum annoying”
security notion is an intermediate notion below fully quantum-resistant. One
limitation of the quantum annoying security notion is that it has a narrow view
of quantum capabilities: by using a formalism in the generic group model with
a discrete logarithm oracle, we are effectively assuming that the only quantum
operation an adversary will do is run Shor’s algorithm, which is certainly less
than the full power available to a polynomial time quantum computer.

Even just considering security against quantum computers running Shor’s
algorithm, a protocol “secure” in the quantum-annoying model is still vulnerable
to attacks by quantum computers, it is just that the attack scales in the size
of the password space. This leads to the question of the cost of computing a
discrete logarithm on a quantum computer. While it is impossible to predict the
efficiency of quantum computers in the far future, current research suggests that
the first generations of quantum computers capable of solving cryptographically
relevant discrete logarithm problems will require significant resources in order
to do so [Roe+17; GM19; GE21; PV23]. These estimates are undoubtedly
coarse and may be off by several orders of magnitude, but it is plausible that
even for early cryptographically relevant quantum computers, computing a
single discrete logarithm will not be cheap, and that computing millions of
discrete logarithms to find the password in a quantum-annoying PAKE may be
prohibitively expensive.

Experiment and Adversarial Interaction. The experiment is the
same as for secrecy (cf. Section 8.1.2), except that the set of queries
Q = {Execute, Send,Reveal,Corrupt} now includes Execute, which
mimics a passive observation of a session by the adversary. This is necessary,
because in the setting of password-authenticated key exchange the adver-
sarial advantage is quantified over the number of Send queries. Corrupt
queries return the parties long-term secrets.1

Quantification. The security is defined by the adversary’s probability to
decide if they received a session key or a random string after submitting a
Test query to a fresh instance.

In the setting of quantum-annoying-ness, fresh means that neither the
session nor any partnered session may be corrupted. That means, on input
Test(ℓ), the game checks if the predicate from Definition 8.3.2 is fulfilled,
and if not, sets the bit bguess = 0. However, first the definition of partnered
has to be adjusted to include some of the conditions formerly covered in the
Match notion for authenticated key exchange (cf. Definition 8.2.3):

Definition 8.3.1 (PartneredPAKE).

PartneredPAKE(ℓ, ℓ′)⇔ Partnered(ℓ, ℓ′) ∧ SameKey(ℓ, ℓ′)

∧ ℓ.accept = ℓ′.accept = true

∧ ℓ.pid = ℓ′.id ∧ ℓ′.pid = ℓ.id

quantum annoying-ness in the generic group model. 150

Definition 8.3.2 (QA-fresh).

QA− fresh(ℓ)⇔ℓ.δownr = honest

∧∀ℓ′ : PartneredPAKE(ℓ, ℓ′)⇒ ℓ′.δownr = honest

Let Gbtest=b
QA-BPR denote the quantum-annoying game during which btest has

the value b. Let qSend be the number of online interactions and qDlog the number
of discrete logarithm queries. In the BPR00 model the adversary’s advantage
is defined as

AdvGQA-BPR
A,Π,I,I(1

λ) :=

⃓⃓⃓⃓
P
[︃
Exp

Gbtest=0
QA-BPR

A,Π,I,I(1
λ) = 1

]︃
− P

[︃
Exp

Gbtest=1
QA-BPR

A,Π,I,I(1
λ) = 1

]︃⃓⃓⃓⃓
.

A protocol is called quantum annoying, if

AdvGQA-BPR
A,Π,I,I(1

λ) ≤ qSend + qDlog
N

+ ϵ ,

with a password space of size N and ϵ negligible in the security parameter.

8.4 quantum annoying-ness in the generic group model.

In the normal generic group model there is a multiplicative public repre-
sentation of group elements taken uniformly from {0, 1}λ, and an additive
secret representation in Zp. The public representations have no intrinsic
structure, and so any information about the group is obtained through the
group operation oracle. Let ⟨g⟩ = G be a generic group of size p with group
operation ◦. When gw ◦ gv is queried, for example (gv, gw) ↦→ gv+w, a table
Tggm is used to retrieve the secret representations of gv and gw, v, w ∈ Zp.
Then v+w (mod p) is the secret representation of gv+w. If gv+w has already
been given a public representation that is returned. Otherwise, a uniformly
random string is sampled from {0, 1}λ, assigned as a new public representa-
tion to gv+w in the table Tggm, and provided back to the querier. Table 8.1
gives an example of queries defining public and secret representations of the
generic group model.

Table 8.1: Examples for simulation of queries to the generic group model group
operation and the ideal cipher. The queries are in order from top to bottom. The
public representations returned from the oracle are uniformly random strings that
contain no information beyond what was given in the query and particularly are
sampled independently.

Oracle Label Public Repr. Secret Repr.

Initialization g0 11 ... 101 1
◦(g0, g0) g0g0 01 ... 001 2

IC ga 11 ... 001
χa

(unif. random index a)

IC gb 10 ... 111
χb

(unif. random index b)
◦(ga, gb) gagb 01 ... 000 χa + χb

tim
e

Similarly, the discrete logarithm oracle Dlog : G × G → Zp takes as
input two group elements and outputs the discrete logarithm. The query

quantum annoying-ness in the generic group model. 151

[ES21] Eaton and Stebila, “The ”Quan-
tum Annoying” Property of Password-
Authenticated Key Exchange Protocols”

Dlog(gv, gw) can be responded to by looking up gv and gw in Tggm and
returning w · v−1 (mod p).

The generic group model is a powerful tool, but limited in its ability to
reason about whether the adversary’s interactions with the discrete logarithm
oracle are sufficient to determine Dlog(g, gt) for a specific group element
gt. Naturally, if they have made exactly this query, the discrete logarithm is
known. But other queries, such as Dlog(g, g2t), are also sufficient to make
Dlog(g, gt) knowable.

The framework of [ES21] simulates the generic group model in such
a way that such specific statements can be made. Let G1, G2, . . . Gµ be
a collection of (public representations of) group elements whose discrete
logarithm (with respect to the group generator g) are of potential interest
to the adversary. When we maintain the group, rather than imbuing these
group elements with specific secret representations in Zp, we instead denote
each as a formal independent variable χ1, . . . , χµ. Group operations now
correspond to addition over a vector space of dimension µ+ 1. For example,
in computing (G1 ◦G1) ◦G2 we would calculate the secret representation
as 2χ1 + χ2 and give this a unique public representation in {0, 1}λ. Thus,
secret representations can now be written as a linear combination of the χi

variables, i. e., α0 +
∑︁

i αiχi.
Table 8.2 gives an example for simulating Dlog queries, showing the

cases where the Dlog can take a uniformly random value in Zp and when
the Dlog between two elements is already defined (but has not yet been
queried).

Table 8.2: Example simulation of the Dlog oracle with public and secret representations as in Table 8.1 and with a generic group of
size p = 29. The vector s⃗ is sampled at random such that Ds⃗ = r⃗, and δ is the returned discrete logarithm as described in the
Dlog oracle. For the vector s⃗ only the relevant entries are displayed as integers in Z29, and all other entries are marked with ∗,
denoting a random integer which does not impact the computation of δ. The first Dlog query adds a zero-vector to D, since the
Dlog (i. e., 2) was already defined by the secret representation. Since D and r⃗ are empty, there is no restriction on the choice of s⃗.
The 2nd and 3rd query return a random integer δ in the solution space. The response to the 4th query was already constrained by
the 2nd and 3rd query, which can also be seen by checking that the vector corresponding to b⃗ was already in the row span of D
before this query was received.

Add to D Add to r⃗

Dlog(gv, gw) gv gw s⃗ δ χ1 χa χb

Dlog(g, g1) 1 2 (∗, ∗, ∗) 2

(forced by relations)
0 0 0 0

Dlog(g, ga) 1 χa (∗, 13, ∗) 13

(random in Zp)
0 −1 0 −13

Dlog(ga, gc) χa χa + χb (∗, 13, 4)
(13+4)

13 ≡ 8 mod 29

(random in Zp)
0 7 −1 0

Dlog(g, gb) 1 χb (∗, 13, 4) 4

(forced by relations)
0 0 −1 −4

tim
e

Thinking about how these secret representations interact with the Dlog
oracle is how we can start to reason about what discrete logarithms are.
Say the adversary queries Dlog(A,B), and the secret representation of A is
α0+

∑︁
αiχi (respectively with β for B). If the adversary is given the response

quantum annoying-ness in the generic group model. 152

[ES21] Eaton and Stebila, “The ”Quan-
tum Annoying” Property of Password-
Authenticated Key Exchange Protocols”

δ (so that Aδ = B), this imposes a constraint on our variables. Specifically,
it says that δ (α0 +

∑︁
αiχi) = β0 +

∑︁
βiχi, which we can rewrite as

µ∑︂
i=1

(δαi − βi)χi = β0 − δα0. (8.1)

This linear constraint lets us define an equivalence relation: if two secret
representations are the same ‘modulo’ the linear constraints imposed by
responses to Dlog, they should have the same public representation. Conse-
quently, if, modulo these constraints, a secret representation χi is equivalent
to some a ∈ Zp, then Dlog(g,Gi) has taken on a definite value a, whether
or not it was actually queried. Otherwise, it can still take on any possible
value.

By taking the coefficients of the χi variables in Equation 8.1 we can
construct a matrix D and a vector r⃗ (we write vectors as column vectors),
so that the set of constraints is easily summarized as Dχ⃗ = r⃗. Similarly, a
secret representation a0+

∑︁
aiχi can be written as the pair (a0, a⃗). In more

detail, the equivalence relation can be defined as follows:

Definition 8.4.1 ((D, r⃗)-equivalent). For group elements ga, gb with secret
representation (a0, a⃗) and (b0, b⃗), we say that ga is (D, r⃗)-equivalent to gb if
there exists an ω⃗ ∈ ZqD

p such that ω⃗TD = a⃗T − b⃗T and ω⃗T r⃗ = b0 − a0.

Note that this is indeed an equivalence relation (reflexivity is proven by
taking ω⃗ = 0⃗, symmetry is proven by taking−ω⃗, and transitivity is proven by
taking ω⃗1+ ω⃗2). The reason that this definition gives us what we want is that
when it is satisfied, we have that b0 − a0 = ω⃗T r⃗ = ω⃗TDχ⃗ = (⃗aT − b⃗T)χ⃗ =

a⃗T χ⃗ − b⃗T χ⃗, telling us that a0 +
∑︁
aiχi = b0 +

∑︁
biχi, as we expect. We

can now describe how the G and the Dlog oracle are simulated in full
detail. Note that the simulation is not efficient [ES21, Sec. 4], since the
simulation requires to search through all previous queries to check if a linear
relationship exists. However, the purpose of the framework is to give an
information-theoretic bound (in the generic group model) relative to the
number of discrete logarithm queries to define a specific discrete logarithm,
thus the exact efficiency is not relevant.

Simulation of Dlog(gV , gW). If gV or gW do not exist in Tggm, then
abort. Otherwise, let (v0, v⃗), (w0, w⃗) be secret representations of gV , gW
respectively. Sample a random vector s⃗ such that Ds⃗ = r⃗ and compute
δ = (w0 + ⟨w⃗, s⃗⟩)/(v0 + ⟨v⃗, s⃗⟩) mod p. Add the row δv⃗T − w⃗T to D, and
value w0 − δv0 to vector r⃗. Then δ is the discrete logarithm that is returned.
This corresponds to [ES21, Alg. 2].

Simulation of ◦(gV , gW). If gV or gW do not exist in Tggm, then abort.
Otherwise, for the secret representations (v0, v⃗), (w0, w⃗), let (z0, z⃗) =

(v0 + w0, v⃗ + w⃗). If z appears in Tggm, return the corresponding public
representation. Otherwise, check if there exists an entry (f0, f⃗) of Tggm that
is (D, r⃗)-equivalent to (z0, z⃗). If so, return the public representation of that
entry. If no such (D, r⃗)-equivalent entry exists, sample a new public repre-
sentation, add the entry Tggm[gZ] = (z0, z⃗) and return gZ . This corresponds
to [ES21, Alg. 5].

quantum annoying-ness in the generic group model. 153

[ES21] Eaton and Stebila, “The ”Quan-
tum Annoying” Property of Password-
Authenticated Key Exchange Protocols”

With these two simulations, we can prove Lemma 3, which is a general-
ization of [ES21, Lemma 1] and an instantiation of which is used in a game
hop in Section 10.2.2.

Lemma 3 (Unique Solutions). Let ga and gb be public representations of
group elements, with corresponding secret representations (a0, a⃗), (b0, b⃗). Let
(D, r⃗) be the current set of constraints on discrete logarithms. Then the discrete
logarithm of gb with respect to ga is defined if and only if [⃗bT |b0] is in the

rowspace of the matrix

[︄
−D r⃗

a⃗T a0

]︄
.

Proof. The discrete logarithm is defined if and only if there exists an α such
that gαa is (D, r⃗)-equivalent to gb. By definition, this is the same as the
existence of α, ω⃗ such that ω⃗TD = αa⃗T − b⃗T , and ω⃗T r⃗ = b0 − αa0. We can
rewrite this relation as[︂
bT | b0

]︂
=
[︁
−ω⃗TD + αa⃗T | ω⃗T r⃗ + αa0

]︁
=

[︃
ω⃗

α

]︃T [︄ −D r⃗

a⃗T a0

]︄
. (8.2)

This establishes that if the discrete logarithm is defined, [⃗b | b0] is indeed
in the rowspace, and if it is in the rowspace that the discrete logarithm is
defined (and equal to the α value that is the scalar for the ‘a’ row).

Corollary 9. Let gb be the public representation of a group element and (b0, b⃗)

the corresponding secret representation. Let g be the generator of the group,
which has secret representation (1, 0⃗). Then the discrete logarithm of gb with
respect to g is defined if and only if b⃗ is in the row span of D.

Proof. We apply Lemma 3 with a⃗ = 0⃗. Since the zero vector cannot affect
the row span, we can conclude that b⃗T must be in the row span of D.

For the other direction we know that there exists some ω⃗ such that
ω⃗TD = b⃗T . Then we claim that the discrete logarithm between g and gb
is b0 + ω⃗T r⃗. This is because we want (b0 + ω⃗T r⃗, 0⃗) to be (D, r⃗)-equivalent
to gb, and indeed we can see that −ω⃗ satisfies −ω⃗TD = −b⃗T and −ω⃗T r⃗ =

b0 − (b0 + ω⃗T r⃗) as desired.

Parts of this chapter are verbatim from our
publications [TMM24b; TMM24a].

[Sin23] Single European Sky ATM Research
Joint Undertaking, Single European Sky ATM
Research

[Aer21] Aeronautical Radio, Incorporated
(ARINC), Internet Protocol Suite (IPS) for
Aeronautical Safety Services Part 1 Airborne
IPS System Technical Requirements

[Int21] International Civil Aviation Organi-
zation (ICAO), ICAO - ANNEX 10 VOL III AMD
91 Aeronautical Telecommunications Volume
III - Communications Systems (Part I - Digital
Data Communication Systems; Part II - Voice
Communication Systems)

[SES23] SESAR JU, LDACS A/G Specification,
Edition 01.01.00, Template Edition 02.00.05,
Edition date 25.04.2023

[ISO21] ISO copyright office, ISO/IEC
11779-3

[Nat22] National Institute for Standards and
Technology, NIST: Selected Algorithms 2022

9
Post-Quantum-Ready Authenticated Key
Agreement for Aviation

Current Air Traffic Management suffers from a lack of digitalization, for
example analogue voice communications, and insufficient cybersecurity mea-
sures in aeronautical datalinks and applications. In Europe, these challenges
are investigated within the Single European Sky Air traffic management
Research joint undertaking [Sin23]. As a result, a new long-range terres-
trial Air-Ground communication protocol was proposed, which must include
measures to “[Provide] a secure channel [...] to ensure authentication and
integrity of [...] message exchange” [Aer21; Int21]. Currently, the L-band
Digital Aeronautical Communications System (LDACS) [SES23] is under
standardization by the International Civil Aviation Organization [Int21],
which provides a framework for air-ground communication between civilian
aircraft and ground stations. A placement of LDACS in such communication
networks is depicted in Figure 9.1.

At the heart of the LDACS security architecture lies a mutually authen-
ticated key exchange, instantiating either an ISO key agreement protocol
[ISO21] with DH, or a similar protocol where the DH component is exchanged
for a key encapsulation mechanism. This is motivated by the understanding,
that the public key exchange schemes undergoing standardization as part of
the NIST post-quantum competition [Nat22] are all KEMs.

After successful key agreement, the resulting key material will be used
to secure LDACS control-plane and user-plane data. Examples of user-plane
data include applications such as the Controller-Pilot Data Link Commu-
nications, Automatic Dependent Surveillance-Contract or Ground-Based
Augmentation System. The first is used for communications of clearances,
route-changes, speed or radio frequency assignments and other mission
critical data. The second application allows the automatic surveillance of
the airspace and informs air traffic controllers about the position, levels and
headings of aircraft. The third enables fully automatic landings, without
the need of a human intervention [SES23]. Since the landing is naturally a
dangerous phase of any flight the lack of a human in the loop as a control
instance requires a substantial amount of trust in these data.

Authenticated Key Agreement. Authenticated key agreement enables
two ormore parties to secretly agree on a key, additionally assuring the parties
that they are interacting with their intended peer. Common frameworks

155

post-quantum-ready authenticated key agreement 156

Ground network

Communications around
airports: AeroMACS [PF14]

Ground network

Satellite-based communications:
SatCOM [EUR23]

Air-air communications:
LDACS A/A

Air-ground communications:
LDACS A/G [SES23]

Figure 9.1: Placement of LDACS (solid, burgundy lines) in commercial aviation communication networks. AeroMACS is a short-
range system to operate around airports. SatCOM allows aircraft to receive navigational support data.

[Brz+11] Brzuska et al., “Composability of
bellare-rogaway key exchange protocols”

[CK02] Canetti and Krawczyk, “Security
Analysis of IKE’s Signature-Based Key-
Exchange Protocol”

[BMS20] Boyd, Mathuria, and Stebila, Proto-
cols for Authentication and Key Establishment,
Second Edition

[WVW92] Whitfield, Van Oorshot, and
Wiener, “Authentication and authenticated
key exchanges”

[ISO21] ISO copyright office, ISO/IEC
11779-3

[Kau+14a] Kaufman et al., Internet Key Ex-
change Protocol Version 2

[Kra03] Krawczyk, “SIGMA: The ’SIGn-
and-MAc’ Approach to Authenticated Diffie-
Hellman and Its Use in the IKE-Protocols”

to prove the security of key agreement protocols are BR-[Brz+11] or SK-
security [CK02], with adversaries that have the capabilities to send or modify
any messages during protocol execution. Additionally, adversaries may
either learn the initial state of a party (weak corruption), or even learn
intermediate states during execution of the protocol (strong corruption). We
review common protocols and their security that relate to this manuscript.
A broader overview can be found in [BMS20].

The Station to Station protocol [WVW92] combines a DH key exchange
with a public-key infrastructure signature scheme. At first, the initiator
sends a public DH value to a responder, who generates their own DH values,
computes the secret key, and responds with their own DH value and a
signature on both values. The responder encrypts their return message with
the shared key. In the last pass, the initiator sends their own signature on the
DH public values encrypted under the shared key. A variant of the Station to
Station protocol removes the encryption of the signatures and either adds a
Message Authentication Code (MAC) on the public DH values, or includes
the identity of the intended partner into the signature. This construction
allows to achieve security against weak corruption. The ISO/ IEC 11770-3
protocols, specifically ISO KAM-7 [ISO21, Sec. 11.7] pick up at this latter
construction, but add an identifier for the intended partner to the signature
and an additional message authentication code to the message flow, lifting
the protocol to provide security against strong corruption.

Finally, the Internet Key Exchange Version 2 (IKEv2) [Kau+14a], which
is implemented in IPsec and virtually all Internet-Protocol-based secure
communications (e. g. Virtual Private Networks), follows the SIGn-and-MAc
(SIGMA) approach [Kra03]. The SIGMA approach combines the public-key
infrastructure-based signature, the message authentication code and the
encryption of the two using the shared key, and was proven secure against
strong corruption.

Post-Quantum Cryptography. The progress in quantum technology
makes a potential threat of large scale universal quantum computers to
cryptography undeniable. To enable secure communication in the future,
quantum secure alternatives to Diffie–Hellman-like key exchanges that do not
rely on the hardness of the discrete logarithm problem, have been proposed.
The most prominent of such alternatives are the post-quantum schemes that
are currently undergoing standardization as part of the NIST post-quantum

post-quantum-ready authenticated key agreement 157

[Nat22] National Institute for Standards and
Technology, NIST: Selected Algorithms 2022

[CK02] Canetti and Krawczyk, “Security
Analysis of IKE’s Signature-Based Key-
Exchange Protocol”

[Cre11] Cremers, “Key Exchange in IPsec Re-
visited: Formal Analysis of IKEv1 and IKEv2”

[Gaz+21] Gazdag et al., “A Formal Analysis
of IKEv2’s Post-Quantum Extension”

[Flu+20] Fluhrer et al., Mixing Preshared
Keys in the Internet Key Exchange Protocol
Version 2 (IKEv2) for Post-quantum Security

[Bin+19] Bindel et al., “Hybrid Key Encap-
sulation Mechanisms and Authenticated Key
Exchange”

[Pei14] Peikert, “Lattice Cryptography for
the Internet”

[SES23] SESAR JU, LDACS A/G Specification,
Edition 01.01.00, Template Edition 02.00.05,
Edition date 25.04.2023

[Mäu+21] Mäurer et al., “A Secure Cell-
Attachment Procedure of LDACS”

[MGS21] Mäurer, Gräupl, and Schmitt, Cy-
bersecurity for the L-band Digital Aeronauti-
cal Communications System (LDACS)

[MG22] Mäurer and Grundner-Culemann,
Formal Verification of the LDACS MAKE Pro-
tocol

[Brz+11] Brzuska et al., “Composability of
bellare-rogaway key exchange protocols”

[SFW19] Saint Guilhem, Fischlin, andWarin-
schi, Authentication in Key-Exchange: Defini-
tions, Relations and Composition

competition [Nat22]. These schemes are based on KEMs, meaning that they
cannot readily be combined with existing protocols that build on a Diffie–
Hellman-like key exchange structure, thus invalidating security guarantees.
On the other side, any protocol that achieves security based on a generic
notion for key encapsulation mechanisms could be instantiated with any of
the NIST post-quantum schemes, providing a quantum-secure protocol.

Key Agreement in the Wake of Quantum Computers. The previously
mentioned key agreement protocols have been, originally, proven secure
under the Decisional Diffie–Hellman assumption [CK02; Cre11], thus are
based on only classically secure components. A first formal analysis of IKEv2
assuming a post-quantum secure variant of DH was conducted by [Gaz+21],
in which case the original proof would carry over, except under the post-
quantum DH assumption. An alternative approach was taken by [Flu+20],
who show that IKEv2 is “post-quantum secure” if pre-shared keys are used to
negotiate new key material. Further, [Bin+19] provide a detailed analysis
of hybrid combiners using Diffie–Hellman values and KEMs, along with
a fine-grained analysis of adversarial power. They provide a multi-stage
security proof for an independent authenticated key exchange based on key
encapsulation mechanism from a SIGMA approach. Further, [Pei14] sketched
the proof of a variant of SIGMA, which exchanged the Diffie–Hellman key
exchange for a key encapsulation mechanism.

Contribution & Objective. In this work we bridge the gap between
classically and quantum secure authenticated key agreement when using any
(post-quantum) IND-CPA secure key encapsulation mechanism. Our main
contribution is the analysis of the LDACS key agreement protocol [SES23,
Sec. C.8.2], which supports to deploys a key encapsulation mechanism
instead of a Diffie–Hellman key exchange. To the best of our knowledge
previous investigations of the LDACS MAKE protocol (for example [Mäu+21;
MGS21; MG22]) rely on heuristic arguments and do not provide security
proofs or a formal analysis of the security guarantees in the computational
and symbolic model.

We provide a simplified and idealized variant of the real-world protocol
in Section 9.1.1, which we then prove to be secure in a computational,
game-based model [Brz+11; SFW19], by proving Theorem 3 in Section 9.2.
Additionally, we provide an automated Tamarin proof in the symbolic model,
the results of which are outlined in Section 9.3 assuming a Dolev-Yao attacker.

Theorem 3. Let kem be an IND-CPA secure key encapsulation mechanism
except with advantage εkem and correctness 1 − δkem, let sig be an EUF-CMA
secure signature scheme except with advantage εsig, and PRF be an ϵPRF secure
pseudo-random function. Let n be a bound on the number of parties, l a
bound on the total number of sessions and λ a security parameter. Then the
LDACS MAKE protocol (cf. Figure 9.3) provides (almost) full explicit entity
authentication and (almost) full explicit key authentication, which implicitly
includes BR-secrecy. Any quantum polynomial time bounded adversary has
advantage of falsifying the notions of at most

4nεsig+
4l2

22λ
+5lδkem+2l2·

(︃
4(εkem + εPRF)

1
l2 − 2(εkem + εPRF)− nεsig

+ 2(εkem + εPRF)

)︃
+

2

2λ
.

https://github.com/mtiepelt/ldacs-make-symbolic-tamarin

post-quantum-ready authenticated key agreement 158

[BPR00] Bellare, Pointcheval, and Rogaway,
“Authenticated Key Exchange Secure against
Dictionary Attacks”

[SFW19] Saint Guilhem, Fischlin, andWarin-
schi, Authentication in Key-Exchange: Defini-
tions, Relations and Composition

We provide a complete proof of Theorem 3, with modularized security
notions and explicit reductions, giving the precise security loss. The protocol
achieves security against polynomially bounded quantum adversaries if
the respective instantiations are quantum secure, i. e., if the KEM and the
signatures are instantiated with post-quantum secure schemes, and the PRF
is secure with appropriate key length. Independently, we provide a model
of the LDACS protocol in Tamarin, achieving security when assuming the
cryptographic components to be perfect. The results of the latter confirm our
findings for the computational proof of the LDACS protocol.

Technical Outline. We consider the setting of two parties each with a
unique id, an initiator “ground station” GS and a responder “air station” AS,
engaging in a key agreement scheme. Every party has access to a public-
key infrastructure, i. e., a long-term private signing key for an EUF-CMA
secure signature scheme sig as well as a respective verification key to check
signatures of an intended communication partner. Further, the parties have
agreed on a cipher suite determining an IND-CPA secure key encapsulation
mechanism kem, an EUF-CMA secure message authentication code MAC, and
a pseudo-random function PRF.

The party GS initiates the protocol by generating a fresh KEM key pair
and sending the public key pkkem to AS. AS runs an encapsulation algorithm
on pkkem resulting in a key k and a ciphertext. A MAC key and a session
key are derived from k using the pseudo-random function PRF. Then the
AS generates a MAC tag and a signature of the ciphertext, the unique id of
GS and pkkem using the MAC key and their long-term signature key. Finally,
the AS sends the ciphertext, the signature and the tag to GS. GS verifies the
signature, decapsulates the ciphertext, derives the MAC key and a session
key and verifies the MAC tag. If the MAC and signature verifications succeed,
GS constructs their own signature and MAC tag of the ciphertext, the id of
AS and the KEM public key, send both to AS and accepts the session key. AS
accepts their session key if the tag and the signature verify correctly. The
above protocol resembles a simplification of the LDACS MAKE protocol as
detailed in Section 9.1.1.

The security of the simplified key agreement protocol is captured in the
Match-security model [BPR00]. We adopt the predicate-based framework
of [SFW19] to model security goals and notions. Particularly, we prove all
individual notions required to assemble Theorem 3 in Section 9.2, achieving
the following properties:

Entity Authentication. The notion of (Almost) Full Explicit Entity Authenti-
cation captures the promise that each party is assured that they interact
with their intended peer, and that their peer is aware of the identity of
the party. Entity authentication holds due to the EUF-CMA security of
the signature scheme sig.

Key Authentication. (Almost) Full Explicit Key Authentication gives the
parties assurance that their intended peer and only their intended
peer knows the secret key, which holds due to the EUF-CMA security
of sig, the IND-CPA security of kem and the pseudo-randomness of
PRF. This notion implies BR-secrecy with forward secrecy against weak
corruption.

a simplified ldacs protocol 159

BRSecrecy
(Theorem 9)

Match
(Theorem 4)

afKeyConf
(Theorem 8)

iEntAuth
(Theorem 5)

fEntConf
(Theorem 6)

afEntConf
(Theorem 7)

Explicit Proofs
(cf. Section 9.2.1)

iKeyAuth
(Corollary 13)

∧

KMSoundness
(Corollary 12)

∧

fExEntAuth
(Definition 8.2.8)

∧

afExEntAuth
(Definition 8.2.9)

∧

fExKeyAuth
(Definition 8.2.10)

∧

afExKeyAuth
(Definition 8.2.11)

∧

Corollaries
(cf. Section 9.2.2)

(Theorem 3)

Figure 9.2: Overview of computational proof structure, showing how the explicit proofs of the security notions (as defined in
Section 8.1) and the consequential security notions are related. The latter notions are implied by the logical conjunction of
corresponding preceding notions. The solid box contains all security notions required for our main Theorem 3.

[SFW19] Saint Guilhem, Fischlin, andWarin-
schi, Authentication in Key-Exchange: Defini-
tions, Relations and Composition

[Kra03] Krawczyk, “SIGMA: The ’SIGn-
and-MAc’ Approach to Authenticated Diffie-
Hellman and Its Use in the IKE-Protocols”

[CK02] Canetti and Krawczyk, “Security
Analysis of IKE’s Signature-Based Key-
Exchange Protocol”

[Pei14] Peikert, “Lattice Cryptography for
the Internet”

[SES23] SESAR JU, LDACS A/G Specification,
Edition 01.01.00, Template Edition 02.00.05,
Edition date 25.04.2023

We provide a complete set of explicit proofs to various security notions
of [SFW19] as outlined in Figure 9.2. The proof of BR-secrecy, which is
implicitly used to assemble Theorem 3, partially follows the SK-security proof
of the SIGMA protocol [Kra03; CK02], with the suggestions of [Pei14] for
exchanging the DH values for a key encapsulation mechanism in the SIGMA
protocol. The adaptions are marked accordingly.

Further, we provide a symbolic proof of mutual authentication, key confir-
mation and secrecy corresponding, the implementation and results of which
are detailed in Section 9.3. The automated proof supports the findings of
the computational proof.

Remark 15. Themessage authentication code used in the LDACS protocol has no
impact on the security loss in Theorem 3. This is not surprising, since the KEM-
based LDACS protocol features a signature similar to ISO-type protocols, which
are known [Kra03, Sec. 4] to achieve security with DH-based instantiations
by including the identities into the signatures. This is also in line with the
main goal of LDACS to provide security against attackers that only corrupt the
long-term keys.

9.1 a simplified ldacs protocol

In this section, we provide a simplified protocol resembling the LDACS MAKE.
The LDACS MAKE protocol [SES23, Sec. C.8.2] features two individual
definitions that either use a Diffie–Hellman key exchange, or a KEM based key
exchange. The first instantiates the standardized Key Agreement Mechanism

https://github.com/mtiepelt/ldacs-make-symbolic-tamarin

a simplified ldacs protocol 160

[ISO21] ISO copyright office, ISO/IEC
11779-3

[Int23] International Civil Aviation organi-
zation, CHAPTER 13 L-Band Digital Aeronau-
tical Communications System (LDACS)

[SES23] SESAR JU, LDACS A/G Specification,
Edition 01.01.00, Template Edition 02.00.05,
Edition date 25.04.2023

[Aer21] Aeronautical Radio, Incorporated
(ARINC), Internet Protocol Suite (IPS) for
Aeronautical Safety Services Part 1 Airborne
IPS System Technical Requirements

[Int21] International Civil Aviation Organi-
zation (ICAO), ICAO - ANNEX 10 VOL III AMD
91 Aeronautical Telecommunications Volume
III - Communications Systems (Part I - Digital
Data Communication Systems; Part II - Voice
Communication Systems)

[Brz+11] Brzuska et al., “Composability of
bellare-rogaway key exchange protocols”

[SFW20] Saint Guilhem, Fischlin, andWarin-
schi, “Authentication in Key-Exchange: Defi-
nitions, Relations and Composition”

7 (KAM-7) [ISO21, Sec. 11.7], and inherits all security properties. As
such, we do not provide any further analysis of this instantiation. The latter
substitutes the Diffie–Hellman key exchange for a construction using a key
encapsulation mechanism, and thus does not instantiate ISO KAM-7, as this
requires to be instantiated with a commutative function F : The session key
is computed as k = F (ri, F (rj , g)) = F (rjF (ri, g)) [ISO21, Sec. 10.2],
where ri is a random value provided by one party, and rj by the other party.
The variant with the key encapsulation, however, computes the session key
from k, c ← Encaps(pkikem, rj) and k ← Decaps(c), and thus does strictly
not instantiate ISO KAM-7. As a consequence, the KEM-based protocol does
not inherit the security properties of the ISO KAM-7. An examination of
the security objectives [Int23; SES23], which are in understanding of the
official security requirements for aeronautical communications set by the
International Civil Aviation Organization (ICAO) [Aer21; Int21], is provided
in this context. In Section 9.1.2 we compare our results to other authenticated
key agreements.

9.1.1 Key Agreement Protocol

The LDACS MAKE protocol is split into two phases: In the cell entry stage,
the two parties ground station GS and air station AS exchange miscellaneous
information over an insecure channel with no attempt to achieve any security.
At the end of the cell entry, both parties are aware of an intended partner
associated by an identifier idGS and idAS, as well as a cipher suite used in
the instantiation of the subsequent stage. Additionally, the AS can send a
flag signaling that they do not have the ground station’s signature public key
vksigGS, which can then be sent (in plain) by GS. We note that no security must
hold for this initial phase, and this is not modeled in the protocol. Instead,
we assume the intended entity identifiers idGS, idAS and respective signature
keys from the public key infrastructure to be an input to the respective party.
In the second stage, the two parties engage in a mutual authenticated key
agreement protocol to exchange a secret that is used to derive multiple keys.
This second stage is the 3-round MAKE protocol between two parties, the
KEM-variant of which is the focus our analysis.

The protocol described in Figure 9.3 is a simplifications of the second
stage from Section 9.1.1: Both parties take as input a unique identifier pid for
an intended partner, their own unique identifier id, the public key vksigpid of the
intended partner, as well as the secret signing key sksigid , the latter two of which
are provided by the public key infrastructure. After completing the protocol,
if the parties accept, then they have a session key K and assurance that
only their intended partner has knowledge of this key. The desired security
properties are discussed below, the achieved security notions along with the
respective proof in Section 9.2. We prove the computational security of these
notions in the game-based model [Brz+11; SFW20] for authenticated key
exchange, and verify the security properties in the symbolic model using the
Tamarin prover.

Simplifications. The LDACS MAKE protocol specification [SES23, Sec.
C.8.2] details the instantiation of the key derivation as well as identifier
strings constructed from constant values that result in multiple individual

a simplified ldacs protocol 161

sidGS := (idGS, idAS, pkkem, c)
pidGS := idAS

sidAS := (idGS, idAS, pkkem, c)
pidAS := idGS

GS(sksigGS, idAS, vksigAS) AS(sksigAS, idGS, vksigGS)

(pkkem, skkem)← KeyGenkem pkkem
(k, c)← Encaps(pkkem)

set kcid
set ecid

kMAC ← PRF(k, (H(idGS, idAS), 1))

m← (c, idGS)

τ ← MAC(kMAC, (m, pkkem))
σ ← Sign(sksigAS, (m, pkkem))

m, τ, σ

set kcid
set ecid

Verify(vksigAS, σ, (m, pkkem))
k′ ← Decaps(skkem,m.c)
kMAC ← PRF(k′, (H(idGS, idAS), 1))

τ ′ ← MAC(kMAC, (m, pkkem)), compare to τ
m′ ← (pkkem,m.c, idAS)

τ2 ← MAC(kMAC,m
′)

σ′ ← Sign(sksigGS,m′)
idAS, τ2, σ′

set K
m′ ← (pkkem, c, idAS)

Verify(vksigGS, σ′,m′)

τ ′2 ← MAC(kMAC,m
′), compare to τ2

set K

KGS := PRF(k′, (H(idGS, idAS), 0)) KAS := PRF(k, (H(idGS, idAS), 0))

Figure 9.3: Simplified key agreement protocol between the ground station GS and
the air station AS. We denote this protocol LDACS MAKE. If any of the verification
Verify or comparison of MAC tags fail, the respective party aborts. The dotted lines
with the burgundy identifiers are relevant for the computational proof in Section 9.2.

[Nat15] National Institute for Standards and
Technology, Secure Hash Standard

session keys, which are not relevant to security. In order to de-clutter the
specification and provide a clear view of the protocol in question, we sim-
plified the specification. In this paragraph we make these simplifications
explicit and provide assumptions and justifications required for security of
the protocol:

(1) The ground and air station are uniquely identified by idGS =

(UAGS, SACGS) and idAS = (UAAS, SACAS) respectively.

(2) If idGS, idAS are unique identifiers, then so is H(idGS, idAS).

(3) Security achieved for the session key KX also holds for multiple keys,
i. e., “DCH session key”, “Voice session key”, “DCCH session key” and
“Key encryption key”.

(4) The composition of HKDF and HMACHash is a pseudo random function.

(5) Authentication Centers (AuC) are treated as if they were GSs.

Simplification (1) is purely cosmetic. Simplification (2) is justified be-
cause SHA256,H, is believed to be a collision resistant hash function [Nat15].
Simplification (3) is justified because all keys are derived in the same manner,

a simplified ldacs protocol 162

[Bel06] Bellare, “New Proofs for NMAC
and HMAC: Security without collision-
resistance”

[SES23] SESAR JU, LDACS A/G Specification,
Edition 01.01.00, Template Edition 02.00.05,
Edition date 25.04.2023

[Int23] International Civil Aviation organi-
zation, CHAPTER 13 L-Band Digital Aeronau-
tical Communications System (LDACS)

[Pei14] Peikert, “Lattice Cryptography for
the Internet”

[Bin+19] Bindel et al., “Hybrid Key Encap-
sulation Mechanisms and Authenticated Key
Exchange”

by computing PRF(k,H(idGS, idAS)) with constant strings as additional in-
puts. Simplification (4) is justified, because HMAC instantiated with SHA256
is a pseudo-random function as shown by [Bel06]. This assumes that HKDF
is instantiated accordingly. For Simplification (5), the specification mentions
the possibility for GS to verify the AS certificates by communicating with
an Authentication Center (AuC) over a secure channel [SES23, Sec. C.8.2]
(see the “dashed” box). Since the communication with the AuC is consid-
ered secure we ignore this special case, and simply assume that the ground
station can verify the correctness of the AS certificate locally. To the best
of our knowledge our simplifications do not invalidate any security guaran-
tees for the protocol as in the specification, since we only merge redundant
components.

Security Goals. Aeronautical standards are split in two parts: First, the
ICAO Standards And Recommended Practices (SARPs) define requirements of
the technology; second, the specification described the technical realization
of these requirements. As such, LDACS security goals are described in the
SARPs [Int23], with the LDACS specification [SES23] detailing the protocols
and other security measures.

LDACS SARPs [Int23] set requirements for providing integrity protection
[Int23, Sec. 13.8.2] and confidentiality [Int23, Sec. 13.8.4] of messages in
transit, as well as mutual authentication [Int23, Sec. 13.8.5] between ground
and air stations. These basic requirements were extended upon in the LDACS
specification, i. e., that the key agreement fulfills mutual authentication and
key establishment [SES23, Sec. C.8.2], as well as key confirmation [SES23,
Sec. C.2, table 96] without specifying details. Further, the requirements ask
for a “capability to prevent the propagation of intrusions within the LDACS
access networks” [Int23, Sec. 13.8.8], which may be interpreted as forward
secrecy, such that leakage of long-term keys does not invalidate security
properties of other, honest parties.

9.1.2 Comparison with other KEM-based Key Agreements

SIGMA-style Authentication. The simplified protocol in Figure 9.3 is
similar to the protocol suggested by [Pei14, Sec. 6.2], with adjustments to
the messages used to generate the signature and the tag. [Pei14, Thm 6.1]
states that their protocol is secure in the CK02 model but no complete proof
is provided. Indeed, our proof of BR-secrecy partially follows the sketch they
outlined, and we mark this in Section 9.2 where appropriate.

[Bin+19] present a compiler for hybrid authenticated key exchange, com-
bining multiple KEMs and a SIGMA-style authentication scheme [Bin+19,
Fig. 13]. Particularly, their scheme exchanges a KEM public key and cipher-
text, which is subsequently authenticated along with a randomly sampled
string (a nonce) along with the party identifiers. The authors show that
their AKE construction provides BR-Match security and BR key secrecy in
the BR93 model if the KEM is IND-CPA secure and if the signature scheme
and the MAC are EUF-CMA secure, thus providing security against quantum
adversaries, if the underlying components are quantum secure. In contrast,
the protocol used in LDACS as well as our abstraction in Figure 9.3 uses
ISO-style authentication and no nonces.

computational proof 163

[Kau+14b] Kaufman et al.,Minimal Internet
Key Exchange Protocol Version 2

[Kau+14a] Kaufman et al., Internet Key Ex-
change Protocol Version 2

Comparison to Key Exchange in IKEv2. The minimal key exchange
component [Kau+14b, Sec. 1.2] of the Internet Key Exchange Version 2
[Kau+14a] consists of an initialization step IKE_SA_INIT and an authentica-
tion step IKE_AUTH, corresponding to the first three messages exchanged
between the parties. Similarly to our setting, IKEv2 builds on an existing
public key infrastructure and assumes that both parties can validate respec-
tive signatures. In the first step, the two parties perform a DH key agreement
along with exchanging a randomly chosen nonce for each party. Using the
shared secret and the two nonces they derive several keys [Kau+14a, Sec.
2.14] such as a session key and an additional key used for further authenti-
cation. In the second step, IKE_AUTH, each party sends an authenticated
encryption with associated data (AEAD) of its own id and of a signature. The
signature contains the message the party sent in the IKE_SA_INIT exchange,
the nonce of the other party and the output of a PRF with the id of the party
as input [Kau+14a, Sec. 2.15]. The AEAD and the PRF use some of the keys
derived after IKE_SA_INIT.

The main differences between the key agreement of IKEv2 and the sim-
plified protocol Figure 9.3 are that IKEv2 uses DH specifically and makes use
of additional nonces. Further, they use an AEAD for the IKE_AUTH messages,
and the signatures contain neither the id nor the DH exponential of the
respective other party. They use a PRF instead of a MAC, the PRF output
is contained in the signature and the PRF does not take the id of the other
party as input.

Finally, IKEv2 [Kau+14a, Sec. 2.12] allows the reuse of DH exponents.
Since the KEM’s pk and c in the LDACS protocol also function as nonces (i. e.,
for each session they are chosen freshly uniformly at random and are unique
except with negligible probability), it is essential that they are not reused,
which is in line the LDACS specification.

9.2 computational proof

In this section we present the computational proof of security for the key
agreement protocol described in Section 9.1. Specifically, we prove correct-
ness of Implicit Entity Authentication (cf. Theorem 5) and BR secrecy (cf.
Theorem 9) for both parties, Full entity confirmation (cf. Theorem 6) for
the air station AS, and Almost Full Entity Confirmation (cf. Theorem 7) and
Almost Full Key confirmation (cf. Theorem 8) for the ground station GS.
From this, additional properties can be inferred, as detailed in Section 9.2.2.

9.2.1 Explicit Proofs and Reductions

We start by proving Lemma 4 which will be used throughout the subsequent
proof. For all of the proof we set kcid = sid = ecid = (idGS, idAS, pkkem, c).
For the remaining section we note that the key output space of the kem and
the key input space of the PRF are identical. The same holds for the key
space of the MAC and the co-domain of the PRF, i. e.,

Kkem = KPRF

YPRF = KMAC .

computational proof 164

Further, the kconf flag as defined in Section 8.1 is set to “almost” for the
groundstation GS,

Lemma 4. Let A be an adversary interacting with the LDACS MAKE protocol.
Let sig be an εsig secure signature scheme and n the number of parties partic-
ipating in the protocol. Then the probability that an adversary can forge a
signature of a party P that was not corrupted is bounded by

P [Sig-Forge] ≤ n · εsig .

Proof. Let Bsig be an adversary that forges a signature in an execution of the
LDACS MAKE protocol. We can construct a trivial reduction to an adversary
that wins the EUF-CMA game: The adversary first guesses the party imper-
sonated by Bsig and sets its verification key to the challenge key from the
EUF-CMA game and queries the signing oracle from the EUF-CMA game to
produce signatures for this party. If at any point Bsig forges a signature for
the impersonated party, the reduction forwards this to the EUF-CMA game.
This refers to a Sig-Forge event. The probability that the reduction wins
the EUF-CMA game is bounded by their ability to guess the impersonated
party, i. e., 1/n and Bsig advantage to forge a signatures. Thus

P [Sig-Forge] ≤ n · εsig .

Theorem 4 (Match Security, cf. Definition 8.2.3). Let kem be δkem correct
and l the number of local sessions. Any adversary’s advantage to falsify the
Match predicate in LDACS MAKE is bounded by

∀ adversaries A : AdvGMatch
A,Π,I,I(1

λ) ≤ l2

22λ
+ lδkem .

Proof. Recall that the kcid and session identifier are identical, kcid = sid,
thus if ℓ, ℓ′ are partnered and the kcid is set, then they also Match. Since
ℓ.kcid := (idGS, idAS, pkkem, c), they have the same view of the ciphertext c
and the public key pkkem, and thus the keys Match, except with probability
δkem, the latter of which can occur on every session in question. Second, if
the sessions ℓ′, ℓ′′ both share the same view of the sid with session ℓ, then
ℓ′ = ℓ′′ except if there is a collision in both the public key and ciphertext,
which happens with probability at most 1/22λ for each pair of instances.

Theorem 5 (Implicit Entity Authentication, cf. Definition 8.2.4). Any adver-
sary’s advantage of falsifying the iEntAuth predicate is zero:

∀ adversaries A : AdvGiEntAuth
A,Π,I,I(1

λ) = 0

Proof. This is trivially fulfilled due to Matching sid := (idGS, idAS, pkkem, c).

Theorem 6 (Full Entity Confirmation, cf. Definition 8.2.5). Let sig be an εsig
secure signature scheme. Any adversary’s advantage of falsifying the fEntConf
predicate for the air station AS is bounded by

∀ adversaries A : AdvGfEntConf
A,Π,I,I(1

λ) ≤ nεsig

computational proof 165

[CK02] Canetti and Krawczyk, “Security
Analysis of IKE’s Signature-Based Key-
Exchange Protocol”

[Pei14] Peikert, “Lattice Cryptography for
the Internet”

[TMM24a] Tiepelt, Martin, and Maeurer,
Post-Quantum Ready Key Agreement for Avia-
tion

Proof. Let ℓAS be a session with peer ℓGS. Then ℓAS accepts after
they received a signature σ ← Sign(sksigGS, (idAS, c, pkkem)) such that
Verify(vksigGS, (idAS, c, pkkem), σ) evaluates to 1. For a honest peer ℓAS.pid =

ℓGS.id it holds that ℓGS.sid := (ℓGS.id, ℓAS.id, pkkem, c), which is the same view
of sid that ℓAS has, and thus they are partnered. For the successful verification
we can construct a reduction to the EUF-CMA security of the signature analog
to that of Lemma 4, such that the advantage is bounded by nεsig.

Remark: This does not hold for GS, since GS accepts after sending the last
message, and AS potentially has not received the message yet, thus not set their
sid yet.

Theorem 7 (Almost-Full Entity Confirmation, cf. Definition 8.2.6). Let sig
be an εsig secure signature scheme. The afEntConf predicate is fulfilled for the
ground station GS if sig is a secure signature scheme:

∀ adversaries A : AdvGafEntConf
A,Π,I,I (1

λ) ≤ nεsig

Proof. The proof is the same as for Theorem 6 with the argument over the
ecid instead of the sid.

A GS accepts only, if they receive a signature σ ←
Sign(sksigAS, (c,GS.sid, pk

kem
GS)) such that Verify(vksigAS, σ) evaluates to 1.

This means, that if the signature was generated by an honest AS, then
AS.ecid := (AS.id,GS′.id, c, pkkem,AS), which is the same as that of the GS.
Since the ecid=sid, if the AS.sid is ever ̸= ⊥, then they have the same
sid and are thus partnered. If the signature was not generated by an
honest AS, we can construct a reduction to the EUF-CMA security of the
signature analog to that of Lemma 4, such that the advantage is bounded by
P [Sig-Forge] ≤ n · εsig.

Theorem 8 (Almost-Full Key Confirmation, cf. Definition 8.2.7). Let sig be
an εsig secure signature scheme, and kem δkem correct. The afKeyConf predicate
is fulfilled for the ground station GS, if sig is a secure signature scheme:

∀ adversaries A : AdvGafKeyConf
A,Π,I,I (1

λ) ≤ nεsig + lδkem

Proof. The proof is the same as for Theorem 6, but with kcid instead of sid.
Additionally, afKeyConf requires ℓ, ℓ′ to have the same key, which is the
case if the kcids Match, except if the kem fails to decapsulate correctly.

Theorem 9 (BR-Secrecy, cf. Definition 8.2.12). The BRSec predicate is fulfilled
for both parties, if kem, PRF and sig are secure, i. e., εkem, εPRF, εsig ≤ negl(λ):

∀ adversaries A : AdvGBRSec
A,Π,I,I(1

λ) ≤ 4(εkem + εPRF)
1
l2 − 2(εkem + εPRF)− nεsig

+2(εkem+εPRF)

The proof of BRSec is closely related to that of SK-security from [CK02],
where the DDH assumption has been exchanged for the IND-CPA security of
a KEM as suggested by [Pei14]. The proof uses a set of supportive lemmas,
Lemmas 5 to 8, most of which have a counterpart in the proof of [CK02].
The relation between the two proofs is summarized in Table 9.1.

In the following we provide the lemmas and sketch the proof of the
Theorem 9. We highlight the parts where the DDH assumption has been

computational proof 166

Table 9.1: Relation between our proof of BR-secrecy and the proof of SK-security
for the basic SIGMA protocol [CK02], where DDH ⇝ kem denotes exchanging the
DDH assumption for IND-CPA security of a KEM.

Our lemmas SK-security proof [CK02] Modifications / Comment

Lemma 4 Additional lemma
Lemma 5 Part of [CK02, Lem. 15] More events, DDH ⇝ kem (cf. [Pei16]).
Lemma 6 Part of [CK02, Lem. 15] More events.
Lemma 7 Part of [CK02, Lem. 15] More events.
Lemma 8 [CK02, Lem. 8 and 10] More events, DDH ⇝ kem (cf. [Pei16]).

Lemma 9 [CK02, Lem. 7] Explicitly presume Guess.
Lemma 10 [CK02, Lem. 11] SameECID instead of Matching sessions.
Lemma 11 [CK02, Lem. 9] Restated for LDACS MAKE.
Lemma 12 [CK02, Lem. 14] Restated for LDACS MAKE.
Lemma 13 [CK02, Lem. 13] Restated for LDACS MAKE.

[CK02] Canetti and Krawczyk, “Security
Analysis of IKE’s Signature-Based Key-
Exchange Protocol”

exchanged for an assumption on the KEM security, and summarize the
important parts. As the proof itself does not offer much insight, a complete
version with proofs for all lemmas can be found in the full version [TMM24a].

Proof. The proof of BR-secrecy for the LDACS MAKE protocol shows that the
probability of an adversary to distinguish the experiment GBRSec outputting
a real or random key is negligible.

We follow the proof of SK-security for the basic SIGMA protocol [CK02],
which defines five hybrids via five variants of a simulator Ŝ. Each of the
Ŝ variants guesses the test session and its partner in order to modify the
generation of the session and mac keys for these two local sessions. If Ŝ
guesses incorrectly or the adversary manipulates the communication between
the two local sessions, then the simulator aborts. The first of the hybrids
(“REAL”) corresponds to the GBRSec game with real Test output, unless
the associated simulator Ŝreal aborts. In the second, denoted “RPRF”, the
shared secret is exchanged for randomness which is used to compute the
session and mac key. In the third game, “ALLR”, both the session and the
mac key are exchanged for randomness. The fourth game, “HYBR”, reverses
the change for the MAC key, to be generated from a random secret again.
Finally, in the last game “RAND”, the MAC key is reversed to be generated
from the exchanged secret, and only the session key is set to a random value.
Figure 9.4 shows how the five hybrids correspond to the individual lemmata
to show indistinguishability of real and random outputs of the Test query
in GBRSec.

We define four different events E = {Abort,Affirm,Guess, Sig-Forge}
which occur during GBRSec or one of the hybrids:

• An Abort event happens when the Ŝ simulator aborts, i. e., it guessed
the test session or its partner incorrectly or the adversary manipulated
the communication between the two local sessions.

• An Affirm event happens when the adversary sets bguess to 1. Since the
adversary acts as a distinguisher, we can express the indistinguishability
of the hybrids via a negligible difference in the probabilities of the
Affirm event.

computational proof 167

regular
execution

REAL RPRF ALLR HYBR RAND
regular

execution

Theorem 9, BR-Secrecy
real test output random test outputc

≈

Lemma 5 Lemma 6 Lemma 7 Lemma 8

Lemma 4

Lemma 10

Lemma 9

Lemma 11

Lemma 12 Lemma 13

Figure 9.4: Overview of the lemmas in our proof of BR-Secrecy for the LDACS MAKE protocol. The five middle columns resemble
the hybrid games according to the proof of SK-security in [CK02].

[TMM24a] Tiepelt, Martin, and Maeurer,
Post-Quantum Ready Key Agreement for Avia-
tion

• A Guess event happens when the Ŝ simulator guesses correctly.

• A Sig-Forge event happens when the adversary successfully forges a
signature from one of the protocol parties.

As a first step, our proof constructs Lemmas 5 to 8, which show that the
probabilities of the four events only differ by a negligible amount between
the different variants of the Ŝ simulator, where E corresponds to an event in
the hybrid as in Figure 9.4. The full proof can be found in [TMM24a], and
is omitted from this work, as they do not add any interesting insights.

Lemma 5.

∀ adversaries A ∀E ⊆ E : |P [Ereal]− P [Erprf] | ≤ εkem

Lemma 6.

∀ adversaries A ∀E ⊆ E : |P [Erprf]− P [Eallr] | ≤ εPRF

Lemma 7.

∀ adversaries A ∀E ⊆ E : |P [Eallr]− P [Ehybr] | ≤ εPRF

Lemma 8.

∀ adversaries A ∀E ⊆ E : |P [Ehybr]− P [Erand] | ≤ εkem

Since we get Ŝrprf from Ŝreal and Ŝhybr from Ŝrand by replacing the
shared secret of the two guessed local sessions with a random value, and since
in our case, the shared secret is a kem key, we can use the IND-CPA property
of the kem to show the negligible difference between these simulators. We
get Ŝallr from Ŝrprf or from Ŝhybr by replacing the outputs of the PRF with
random values for the two guessed local sessions. Therefore, the negligible
difference between these simulators follows from the PRF property.

Subsequently, we make a connection between the hybrid games and the
GBRSec game. For this purpose, we first define Lemmas 9 to 11.

computational proof 168

Lemma 9.

∀ adversaries A : P [Abortreal ∧ Guessreal] = 0

Lemma 9 states that an Abort and a Guess event cannot coincide under
an Ŝreal simulator. Recall that a Guess event implies that the simulator
guesses the test session and its partner correctly. This especially means that
a local session exists which will eventually become the partner of the test
session, unless it aborts. In our case that local session has the same ecid as
the test session. The ecid of a local session is composed of the identities of the
two parties involved in the current protocol session as well as the public key
and the ciphertext for the kem, which also are all the values and identities
that the adversary could have manipulated via the exchanged messages.
Thus, in case of a Guess event, the simulator guesses the test session and its
partner correctly and the adversary does not manipulate the communication
between the two, i. e. the simulator will not abort.

Lemma 10.

∀ adversaries A ∀ℓ ∈ LSID ∃ℓ′ ∈ LSID :

(ℓ accepts ∧ ℓ.δpeer = honest⇒ P [¬SameECID(ℓ, ℓ′)] ≤ n · εsig)

Lemma 10 shows that each local session which accepts and has an uncor-
rupted intended partner has the same ecid as some other local session. To
ensure identical ecids, either of the two exchanged signatures is sufficient
since it covers the public key and the ciphertext for the kem as well as the
identity of the party which receives the signature. The identity of the signer
is implicitly associated to the verification key.

The lemma is useful for Lemma 11, which establishes a noticeable lower
bound for a Guess event. The probability of correctly guessing two specific
local sessions is trivially noticeable in the size of the set of all local sessions.
However, the test session might not even have a partner, so we also need to
use Lemma 10 to limit the probability for this case.

Lemma 11. Similar to [CK02, Lem. 9]

∀ adversaries A : P [Guessreal] ≥
1

l2
− nεsig

Now we are able to show in Lemmas 12 and 13 that the “REAL” hybrid
given a Guess event is equivalent to GBRSec with real Test output and
that the “RAND” hybrid given a Guess event is equivalent to GBRSec with
random Test output, except for a negligible probability. The reasoning is
that, by Lemma 9, a Guess event prevents the simulator from aborting. If
the simulator does not abort, then all local sessions behave consistently and
thus the adversary cannot distinguish between the simulation of the hybrids
and GBRSec.

Lemma 12. Similar to [CK02, Lem. 14]

∀ adversaries A : |Preal(A)− P [Affirmreal|Guessreal] | = 0

Lemma 13. Similar to [CK02, Lem. 13] The following holds true:

∀ adversaries A :

|Prand(A)− P [Affirmrand|Guessrand] | ≤
2(εkem + εPRF)

1
l2 − 2(εkem + εPRF)− nεsig

. (9.1)

computational proof 169

[SFW19] Saint Guilhem, Fischlin, andWarin-
schi, Authentication in Key-Exchange: Defini-
tions, Relations and Composition

[SFW19] Saint Guilhem, Fischlin, andWarin-
schi, Authentication in Key-Exchange: Defini-
tions, Relations and Composition

Finally, we combine all game hops from Lemmas 5 to 8, 12 and 13 to
prove the BR-secrecy of the LDACS MAKE protocol. Although we now only
consider the hybrids under the precondition that a Guess event happens,
the game hops of Lemmas 5 to 8 are still valid since Lemma 11 proved the
probability of a Guess event to be noticeable.

9.2.2 Consequential Security Properties

Following the work of De Saint Guilhem et al. [SFW19], the Theorems 4
to 9 also imply the following security notions:

Corollary 10 (Full Explicit Entity Authentication, cf. Definition 8.2.8). The
fexEntAuth predicate is fulfilled for the air station AS if sig is a secure signature
scheme:

∀ adversaries A : AdvGfexEntAuth
A,Π,I,I (1λ) ≤ n · εsig

fexEntAuth follows from iEntAuth ∧ fEntConf ⇔ fexEntAuth
[SFW19, Prop. 9.3.] and from Theorems 5 and 6.

Corollary 11 (Almost-Full Explicit Entity Authentication, cf. Definition 8.2.9).
The afexEntAuth predicate is fulfilled for the ground station GS if sig is a secure
signature scheme:

∀ adversaries A : AdvGafexEntAuth
A,Π,I,I (1λ) ≤ n · εsig

afexEntAuth follows from iEntAuth∧ afEntConf⇔ afexEntAuth,
which can be proven in an analogous way to [SFW19, Thm. 3.1.], and from
Theorems 5 and 7.

Corollary 12 (Key-Match Soundness). The KMSoundness predicate is fulfilled
for both parties if kem, PRF and sig are secure:

∀ adversaries A : AdvGKMSoundness
A,Π,I,I (1λ)

≤ l2 ·
(︃

4(εkem + εPRF)
1
l2 − 2(εkem + εPRF)− nεsig

+ 2(εkem + εPRF)

)︃
+

(︃
l2

22λ
+ lδkem

)︃
+

1

2λ

KMSoundness follows from Theorems 4 and 9 and from [SFW19, The-
orem 5.1.], which states that, with session key space KΠ, the following
holds:

∀ adversaries A ∃ adversaries B1,B2 :

AdvGKMSoundness
A,Π,I,I (1λ) ≤ l2 · AdvGBRSec

B2,Π,I,I(1
λ) + AdvGMatch

B1,Π,I,I(1
λ) +

1

|KΠ|
.

Corollary 13 (Implicit Key Authentication). The iKeyAuth predicate is fulfilled
for both parties if kem, PRF and sig are secure:

∀ adversaries A : AdvGiKeyAuth
A,Π,I,I(1

λ)

≤ l2 ·
(︃

4(εkem + εPRF)
1
l2 − 2(εkem + εPRF)− nεsig

+ 2(εkem + εPRF)

)︃
+ 2 ·

(︃
l2

22λ
+ lδkem

)︃
+

1

2λ

symbolic security 170

[NS78] Needham and Schroeder, “Using En-
cryption for Authentication in Large Net-
works of Computers”

[DY83] Dolev and Yao, “On the Security of
Public Key Protocols”

[Mei+13] Meier et al., “The TAMARIN
Prover For The Symbolic Analysis Of Secu-
rity Protocols”

iKeyAuth follows from iKeyAuth ⇐ iEntAuth ∧ Match ∧
KMSoundness [SFW19, Prop. 9.2.] and from Theorems 4 and 5 and Corol-
lary 12.

Corollary 14 (Full Explicit Key Authentication, cf. Definition 8.2.10). The
fexKeyAuth predicate is fulfilled for the air station AS if kem, PRF and sig are
secure:

∀ adversariesA : AdvGfexKeyAuth
A,Π,I,I (1λ)

≤ l2
(︃

4(εkem + εPRF)
1
l2 − 2(εkem + εPRF)− nεsig

+ 2(εkem + εPRF)

)︃
+ 2

(︃
l2

22λ
+ lδkem

)︃
+

1

2λ
+ nεsig

fexKeyAuth follows from fexKeyAuth ⇐ fexEntAuth ∧ Match ∧
KMSoundness [SFW19, Prop. 9.2.] and from Theorem 4 and Corollaries 10
and 12.

Corollary 15 (Almost-Full Explicit Key Authentication, cf. Definition 8.2.11).
The afexKeyAuth predicate is fulfilled for the ground station GS if kem, PRF
and sig are secure:

∀ adversariesA : AdvGafexKeyAuth
A,Π,I,I (1λ)

≤ l2
(︃

4(εkem + εPRF)
1
l2 − 2(εkem + εPRF)− nεsig

+ 2(εkem + εPRF)

)︃
+

2l2

22λ
+ 3lδkem +

1

2λ
+ nεsig

afexKeyAuth follows from iKeyAuth ∧ afKeyConf⇔ afexKeyAuth
[SFW19, Thm. 3.1.] and from Theorem 8 and Corollary 13.

9.3 symbolic security

The symbolic proof model establishes the correctness and security of a cryp-
tographic protocol without making assumptions about the computational
limitations of an adversary. The adversary is modeled as a Dolev-Yao attacker
[NS78; DY83], who can send, receive or alter messages in interactive proto-
cols, and who has access to cryptographic primitives as perfect black-boxes.
The messages sent over the network are inputs to these black-boxes and
the adversary is restricted to use only these. A protocol is formalized using
correspondence assertions of the form “If event x is executed, then event y is
executed”. An automated symbolic prover, such as Tamarin [Mei+13], can
check whether a protocol fulfills security goals by (exhaustively) exploring
the possible options for parties (called agents) assuming the various roles in
the protocol.

In Tamarin [Mei+13], security is formalized over a system state as an
initially empty multi-set of predicates called facts. Rules define how the state
can transition to a new set, adding ore removing facts from the system state.
Each rule is associated with a premise and a conclusion. A rule can only
be applied, if all facts of the premise are present in the system state. If the
rule is applied, then the system state is updated according to the facts in

symbolic security 171

[The23] The Tamarin Team, Tamarin-Prover
Manual

[Cel+22] Celi et al., “A Tale of Two Models:
Formal Verification of KEMTLS via Tamarin”

[Low97] Lowe, “A Hierarchy of Authentica-
tion Specifications”

[Gaz+21] Gazdag et al., “A Formal Analysis
of IKEv2’s Post-Quantum Extension”

the conclusion. Additionally, rules can feature action facts, which record the
application of the rule by appending all action facts to a trace.

With these rules the algorithmic behaviors of a protocol can bemodeled by
defining rules mimicking the interaction of the agents. Similarly, adversarial
powers can be modeled via action facts, for example, a rule can feature an
action fact representing that a long-term secret is available to the adversary
and that the corresponding party is corrupted.

Security properties on the other hand are modeled via traces of action
facts. These are denoted lemmas. This means, a property is modeled by a
giving a formula which is evaluated on the traces. Then a security property
can be modeled either with an existential (“exists”) or an universal (“all”)
quantification, indicating that the formula has to evaluate to True either for
any one trace, or for all traces. Usually, security properties are required to
hold for all traces.

Protocol and Adversarial Rules. The Tamarin manual [The23] al-
ready provides built-in code for signing and hashing, Celi et al. [Cel+22,
Sec. 3.2.1] provide a Tamarin instantiation of a KEM, which satisfies Defini-
tion 2.2.1. The protocol described in Section 9.1 is modeled via rules and
facts, allowing each party corresponding to a unique identifier to register a
long-term key, and then to engage with any other party in a protocol session.

To model the adversary additional rules are added that allow to reveal
the long-term key, a KEM key or a session key: The rule “Reveal_ltk” has as
premises a long-term key associated with an agent X, an action fact that
marks the agent as corrupted via the fact “CorruptedLtk(X)”, and which adds
the long-term key in question as a conclusion fact to the state. Analogously,
“Reveal_kem” and “Leak_session” allow to reveal the secret key output by
Encaps, Decaps, or the session key. As such, the adversary in the symbolic
model is slightly stronger than in the computational model, as they are
allowed to have the KEM key leaked (in the computational model, only
long-term key via a Corrupt query and session keys via Reveal queries (or Test
queries, in the BRSec predicate)).

Security Properties. In the following we describe the lemmas associated
with the security properties relevant to this work, where agent A and B
correspond to the ground- and air stations:

mutual_authentication_A/B The property is modeled via Lowes [Low97] bi-
directional full-agreement property as outlined in the Tamarin manual
[The23], combined with a unique element exchanged between agent
A and B. Full agreement is the combination of injective agreement,
i. e., stating that if agent A accepts with agent B, then they can be
sure B also accepted with A, except if either of long-term keys was
revealed (resulting in corruption of the agent as an action fact). The
uniqueness property is modeled via the session_ uniqueness_A/B lemma
(modeled as in [Gaz+21]), i. e., the guarantee that different sessions
have different keys. When both lemmas hold, mutual authentication
is achieved via full-agreement. Hence, the mutual_authentication_A/B
lemma can be regarded as a combination of Definitions 8.2.4 to 8.2.6.

symbolic security 172

[Gaz+21] Gazdag et al., “A Formal Analysis
of IKEv2’s Post-Quantum Extension”

[DM17] Donenfeld and Milner, “Formal ver-
ification of the WireGuard protocol”

[ISO21] ISO copyright office, ISO/IEC
11779-3

secrecy Secrecy corresponds to BR-secrecy, promising that when a session
key x is assigned a “secret” property at time i, then either the adversary
does not know x, or x has been revealed, or a corresponding agent
was marked as corrupted via an action fact. Similarly, secrecy_pfs
guarantees that the adversary does not know x, except if the agent
was corrupted at a time j prior to i, i. e., j < i.

key_consistency_A/B Key consistency [Gaz+21, Sec. A.6.4] corresponds to
key confirmation, such that for all sessions with agents A and B with
keys keyA and keyB respectively, the following holds: When agent A
accepts keyA at time i in session iA, and agent B accepts with keyB at
time j in the same session, then keyA and keyB must be same, except if
one of the agents was corrupted. This corresponds to key confirmation
in the computational model.

The models of session uniqueness and key confirmation are based on the
implementation from Donenfeld et al. [DM17].

9.3.1 Transition Model

Nowwe are ready to review the automated proof from the Tamarin implemen-
tation of the LDACS MAKE protocol as described in Section 9.1. Figure 9.5
outlines the flow of the Tamarin code relative to the description of the proto-
col in Figure 9.3 as a set of states, rules and protocol messages for each of
the agents. Recall that agent A corresponds to the ground station GS and
agent B to the air station AS.

The states of the agents are “S_A_i” for i ∈ Z for agent A and “S_B_i” for
agent B respectively. The rules, corresponding to the transition between the
states of the individual agents (here A) within the protocol, are “init_A”,
“A_1”, “A_2”, etc., as well as the queries accessible to the adversary, for
example “Reveal_ltk”. Additionally, Figure 9.5 shows the Protocol messages
implied by the rules, as well as the cryptographic messages applied in Fig-
ure 9.3. It may be noted that in the symbolic model the parties first exchange
the identifier of the intended partner in plain before engaging in the protocol
(in comparison to taking the respective identifier as an input in Figure 9.3).

Our Tamarin code comprises four implementations of the protocol: First,
the expected protocol Figure 9.3 with the key encapsulation mechanism.
Second, the protocol but excluding the generation, transmission and veri-
fication of MACs, to verify that all lemmas can be achieved without using
the MAC. The third and fourth variant correspond to the protocol using DH
instead of a KEM, thus resembling the original KAM-7 [ISO21, Sec. 11.7]
for completeness.

For each variant, Tamarin exhaustively explores the possible actions of
the agents and the adversary to check if the lemmas mutual_authentica-
tion_A/B, session_uniqueness, secrecy, secrecy_pfs and key_consistency_A/B
as described in Section 9.3 are fulfilled. Additionally, the model includes a
lemma session_exists and two_sessions_exist, with the first lemma showing
the possibility for the Tamarin model to terminate and the second even
enhancing the attacker’s abilities by allowing them to reuse cryptographic
primitives from the previous protocol run.

https://github.com/mtiepelt/ldacs-make-symbolic-tamarin
https://github.com/mtiepelt/ldacs-make-symbolic-tamarin

symbolic security 173

Figure 9.5: Tamarin rules, states, cryptographic messages and operations for the KEM variant of the protocol. This figure was
inspired by [Cel+22, Fig. 2].

9.3.2 Results

Table 9.2 shows the results of verifying the lemmas with Tamarin: the “Scope[-
traces]” correspond to either the existence of a sequence of traces (“Exists”),
or the exhaustive search over all (“All”) possible combinations of traces that
achieve the conditions required to fulfill the lemma. The “Steps” indicate
the number of rules (see Figure 9.5) that had to be explored to validate the
result.

Table 9.2: Tamarin results for LDACS security notions. Modeled in-/excluding a MAC and using Diffie–Hellman key exchange/KEM
as key exchange.

Lemma Scope #Steps w HMAC #Steps w/o HMAC
[-traces] DH KEM DH KEM

session_exists Exists 24 25 23 23
two_sessions_exist Exists 46 48 44 44

mutual_authentica-
tion_A/B

All 50 54 50 54

session_uniqueness_A/B All 32 32 32 32

secrecy All 32 28 24 26
secrecy_pfs All 32 28 24 26

key_consistency All 16 16 16 16

Table 9.2 shows that both lemmas, session_exists and two_sessions_exist,
have a trace, guaranteeing the completion of a protocol run and that the
lemmas hold even if the adversary re-uses values from previous runs. Further,
for all combinations of setups (i. e., with Diffie–Hellman or KEM, with or
without MAC) the lemmas are satisfied, thus the protocol fulfills the security

symbolic security 174

claims in the symbolic model. Particularly, the lemmas hold even in the
setting with the HMAC removed from the protocol, thus the automated proof
confirms the findings of Section 9.2, verifying that themessage authentication
code is not required to provide security for LDACS MAKE in the setting of
weak corruption.

Parts of this chapter are verbatim from our
publications [TES23b; TES23a].

[Sch17] Schmidt, Requirements for Password-
Authenticated Key Agreement (PAKE) Schemes

[Bou+23] Bourdrez et al., The OPAQUE
Asymmetric PAKE Protocol

[TW22] Taubert and Wood, SPAKE2+, an
Augmented PAKE

[IEE09] IEEE, IEEE Standard Specification
for Password-Based Public-Key Cryptographic
Techniques

[IEC17] IEC, Information technology – Per-
sonal identification – ISO-compliant driving
licence

[HO22] Hao and Oorschot, “SoK: Password-
Authenticated Key Exchange – Theory,
Practice, Standardization and Real-World
Lessons”

[Beg+23] Beguinet et al., “GeT A CAKE:
Generic Transformations From Key Encaspu-
lation Mechanisms To Password Authenti-
cated Key Exchanges”

[Nat22] National Institute for Standards and
Technology, NIST: Selected Algorithms 2022

[ES21] Eaton and Stebila, “The ”Quan-
tum Annoying” Property of Password-
Authenticated Key Exchange Protocols”

[AHH21] Abdalla, Haase, and Hesse, “Secu-
rity Analysis of CPace”

10
Making an Asymmetric PAKE
Quantum-Annoying

A wide-spread method for authentication in client-server situations involves
a key exchange where the server is authenticated through a public-key
infrastructure, while the client authenticates themselves with a password by
transmitting the password directly over the encrypted channel. This method
is suboptimal since the user’s password is exposed to the server.

A PAKE protocol enables two parties to perform a key exchange, authen-
ticated using mutual knowledge of a shared password, without revealing
the password to the network or to each other. The setting of PAKEs allows
two kinds of attacks: online attacks (the adversary interacting with either
party), and offline attacks (the adversary operating locally based on what is
has observed from previous online interactions). Password-based protocols
are always vulnerable to online dictionary attacks, where the adversary can
rule out one password guess with each online interaction with a party. The
goal of a PAKE is to ensure that offline dictionary attacks are infeasible, for
example because of an intractability assumption. While PAKEs have been
known for decades, there was little progress in adoption for many years, but
there is renewed interest in adoption of PAKEs via a variety of recent and
ongoing standardization efforts [Sch17; Bou+23; TW22; IEE09; IEC17].

Most PAKEs are based on the hardness of solving the discrete logarithm
problem (see [HO22] for an overview), making them vulnerable to attacks
by quantum computers, thus motivating the question of building PAKEs that
are quantum-resistant. The obvious answer is to build new PAKEs that rely
on post-quantum intractability assumptions, and post-quantum PAKEs are
starting to emerge in the literature. These new PAKEs (e. g., see [Beg+23])
are based on key encapsulation mechanisms to match the standardized
quantum-secure encryption [Nat22]. However, there may be other interim
options requiring fewer modifications by augmenting existing protocols.

Quantum Annoying. Eaton and Stebila [ES21] developed a formalization
of the quantum-annoying property for PAKEs by considering a classical
adversary working in the generic group model who is given the additional
power of a discrete logarithm oracle. They showed that the base version of
the symmetric PAKE protocol CPace [AHH21] was quantum-annoying in the
generic group model. One main characteristic of CPace that lead to it being
quantum-annoying is that the password π shared by the client and server is

175

making an asymmetric pake quantum-annoying 176

[GJK21] Gu, Jarecki, and Krawczyk,
“KHAPE: Asymmetric PAKE from Key-Hiding
Key Exchange”

[JKX18] Jarecki, Krawczyk, and Xu,
“OPAQUE: An Asymmetric PAKE Protocol
Secure Against Pre-computation Attacks”

[ES21] Eaton and Stebila, “The ”Quan-
tum Annoying” Property of Password-
Authenticated Key Exchange Protocols”

used to derive a generator gπ of the group, and then a Diffie–Hellman key
exchange is performed using that generator (gxyπ). But from the perspective
of an adversary who only sees Diffie–Hellman public keys (gxπ and gyπ), no
information is gained about the password π since for each π′ there is an x′

such that gx
′

π′ = gxπ.

Contribution & Objective. In this manuscript, we focus on KHAPE
[GJK21], a compiler that turns a Key-Hiding Authenticated Key Exchange
(KH-AKE) and a PAKE into an asymmetric Password Authenticated Key Ex-
change (aPAKE). Asymmetric PAKEs improve upon regular PAKEs by forcing
an attacker to perform an exhaustive search on the password even after
server compromise, since the value stored by the server cannot be used
to impersonate the client. The OPAQUE framework [JKX18] introduced
the notion of strong asymmetric PAKEs, which further guarantees that no
pre-computation can be performed to aid in the exhaustive search for the
password in the case of server compromise. This is achieved by combining
an oblivious pseudo-random function and a PAKE.

Whereas CPace is a symmetric PAKE, the KHAPE-HMQV protocol con-
structed by the KHAPE compiler [GJK21] is an asymmetric PAKE, so com-
promise of a server using KHAPE-HMQV does not enable the adversary to
impersonate a user without first performing an offline dictionary attack.
However, the protocol is not quantum-annoying: after seeing just a single
transcript, a single discrete logarithm computation suffices to enable an
offline dictionary attack to recover the user’s password. We address this
vulnerability by presenting the QA-KHAPE protocol, a quantum-annoying
variant of KHAPE-HMQV. As shown in Figure 10.1, our modifications entail
encapsulating an additional key into the server-stored credentials, which is
later used by the principals to encrypt their Diffie–Hellman key-pairs prior to
exchanging messages. This effectively means that each guess of the password
causes the transcript to decrypt (under a symmetric key dependent on the
password) to a different pair of Diffie–Hellman public keys, so a new discrete
logarithm must be performed each time.

The changes to the protocol require only minimal computational and com-
munication overhead, with the same number of rounds as KHAPE-HMQV and
only a single additional ideal cipher ciphertext (increasing the server-client
ciphertext from three to four elements). The client-server communication
remains unchanged, and the protocol requires two additional ideal cipher
computations, one encryption, and one decryption.

We show that QA-KHAPE is quantum-annoying following the methodol-
ogy of [ES21]: the adversary is a classical adversary in the generic group
model with the addition of a discrete logarithm oracle. In Section 10.2.1, we
define a security game in the generic group model tailored to capturing the
core quantum annoying property of the QA-KHAPE protocol. In Section 10.3,
we apply this to show that QA-KHAPE is secure in a quantum-annoying vari-
ant of the standard BPR00 security model (cf. Section 8.3) for asymmetric
password authenticated key exchange.

Limitations. Just as in the original security proof of KHAPE by [GJK21],
our analysis also relies on the ideal cipher assumption. Care must be taken
for an instantiation of the IC, which is discussed in [GJK21, Sec. 8].

quantum annoying khape-hmqv 177

[HYY24] Hhan, Yamakawa, and Yun, “Quan-
tum Complexity for Discrete Logarithms and
Related Problems”

[HYY23] Hhan, Yamakawa, and Yun, Quan-
tum Complexity for Discrete Logarithms and
Related Problems

[GJK21] Gu, Jarecki, and Krawczyk,
“KHAPE: Asymmetric PAKE from Key-Hiding
Key Exchange”

[Kra05] Krawczyk, “HMQV: A High-
Performance Secure Diffie-Hellman
Protocol”

In 2023, a preprint (later published as [HYY24]) has examined the
“multiple discrete logarithm” problem induced by the quantum annoying
model [HYY23]. In this work, the authors show that it is possible to (asymp-
totically) solve m discrete logarithm problems (in a generic group) with
a quantum computer more efficiently than m times the cost of a single
Shor’s instance. In particular, their algorithm solves m discrete logarithms
with around logm times fewer quantum group operations (if m = Ω(log p),
where p is the size of the group). This comes at the expense of requiring
large quantum memory to compute everything simultaneously. Whether this
represents a concrete improvement to the ability of an adversary to break
quantum annoying security (and if so, how large the grouping m should be)
is an interesting open question. Our proofs bound the adversary’s success
probability in terms of the number of discrete logarithm oracle queries made.
If it is a practical improvement to group such queries, this does not affect
our proofs, only how the induced bounds translate to real-world estimates
of adversary cost.

10.1 quantum annoying khape-hmqv

The KHAPE compiler [GJK21] transforms a KH-AKE, a PAKE, a random
oracle, and an ideal cipher into an asymmetric PAKE which provides key
establishment with key integrity and confirmation, mutual authentication
and forward secrecy. A highly efficient instantiation [GJK21, Fig. 14] uses the
HMQV [Kra05] protocol, the security of which is based on the computational
Diffie–Hellman problem.

KHAPE is split into a registration and an aPAKE phase. During registra-
tion the server generates the KH-AKE key pairs (a,A := ga), (b,B := gb),
partially encrypts them using the password as a key, e← IC.E(π, a,B), and
stores the ciphertext along with (A, b). All other values are discarded. In
the aPAKE phase the server generates a key pair (y, Y) and sends (Y, e) to
the client. The client decrypts e using their password and generates a key
pair (x,X). A Diffie–Hellman session is computed from (a, x,B, Y) which
is used to derive a key-confirmation value τ , and later the session key. The
key confirmation is sent along with the value X to the server, who computes
the equivalent Diffie–Hellman session from (b, y, A,X), verifies the key con-
firmation, and either computes a session key and a new key confirmation
(which is send to the client), or sets both to ⊥. The client checks the key
confirmation and computes the session key, or sets it to ⊥.

In the quantum-annoying setting, KHAPE-HMQV is susceptible to an
offline attack on the password using a single discrete logarithm query. Given
a transcript (e, Y,X, τ) an adversary can determine a list of possible values
for KH-AKE key pairs: each password guess πi gives a pair of candidate values
(ai, Bi)← IC.D(πi, e). Additionally, they can query the discrete logarithm
oracle once on the value X, receiving x. Then for each password guess (i. e.,
for each ai, Bi), they can verify if the Diffie–Hellman completion results in
the key-confirmation value τ from the transcript, effectively providing an
offline method to check passwords.

quantum annoying khape-hmqv 178

10.1.1 QA-KHAPE

Our QA-KHAPE protocol, presented in Figure 10.1, is a quantum-annoying
aPAKE. The construction is based on KHAPE-HMQV and requires only min-
imal changes, which are highlighted in the figure. During the registration
phase the server generates an additional secret key skwhich is then encrypted
using the π and stored as part of the credentials. Correspondingly, during
the aPAKE phase the client decrypts e obtaining this key sk, which they use
to encrypt the ephemeral valueX , resulting in the ciphertext c, which is then
sent to the server. Briefly speaking, QA-KHAPE is quantum-annoying because
an adversary receiving a transcript must now solve a discrete logarithm for
every decryption of c or e to verify if a password guess was correct. This
comes at the cost of an additional secret key to be stored as credentials,
which increases the size of first message from server to client. The client has
to perform one additional decryption and encryption, while the server only
performs an additional decryption.

Registration on Server input (π,C) (a,A), (b,B) fresh AKE keys; sk $←− {0, 1}λ
e← IC1.E(π, a,B, sk)
store credS [C] = (b, A, e, sk)

aPAKE C(sid, S, π) S(sid, C, credS [C]

y $←− Zp, Y ← gy
e, Y

a,B, sk← IC1.D(π, e)

x $←− Zp, X ← gx

hX ← H1(sid, C, S,X), hY ← H1(sid, C, S, Y)

σC ←
(︁
Y ·BhY

)︁x+hX ·a

k1 ← H2(sid, C, S,X, Y, σC)
cX ← IC2.E(sk, X)

τ ← PRF(k1, 1)
cX , τ ▷ In KHAPE-HMQV, X is sent instead of cX

X ← IC2.D(sk, cX)

hX ← H1(sid, C, S,X), hY ← H1(sid, C, S, Y)

σS ←
(︁
X ·AhX

)︁y+hY ·b

k2 ← H2(sid, C, S,X, Y, σS)
if τ ̸= PRF(k2, 1): γ = K2 = ⊥
else: γ ← PRF(k2, 2), K2 ← PRF(k2, 0)

γ
if γ ̸= PRF(k1, 2): K1 ← ⊥
else: K1 ← PRF(k1, 0)

Figure 10.1: QA-KHAPE: quantum-annoying variant of KHAPE-HMQV [GJK21, Fig 14], with our changes compared to
KHAPE-HMQV highlighted.

Security. The QA-KHAPE protocol is a quantum-annoying aPAKE in the
generic group (cf. Section 8.4), ideal cipher and random oracle model and
features mutual authentication and key confirmation. No perfect forward se-
crecy can be achieved in the setting of quantum-annoying for KHAPE-HMQV,
because compromise of any party releases a static secret that, together with
the public value e, removes all the ambiguity on the group elements in ques-
tion (i. e., A,B,X). This enables an offline attack on the password using
only a single discrete logarithm query. Note that a quantum-annoying PAKE
achieving perfect forward secrecy would mean to establish a secure, authen-
ticated key without taking advantage of the password or credentials, which

security framework: the KHAPECORE game 179

[ES21] Eaton and Stebila, “The ”Quan-
tum Annoying” Property of Password-
Authenticated Key Exchange Protocols”

seemingly contradicts the main point of a PAKE; establishing this formally is
an interesting question for future work.

All other properties of KHAPE-HMQV are preserved, for example, secu-
rity based on the computational Diffie–Hellman assumption against purely
classical attackers, and thus a full fall back to security of KHAPE-HMQV.
The quantum-annoying security is summarized in our main contribution,
Theorem 10.

Theorem 10. Let G be a cyclic group of size p, H1,H2 be random oracles and
IC1, IC2 ideal ciphers with ciphertext space {0, 1}n1 , {0, 1}n2 respectively. Let
qSend, qExec, qHi

, qICi , q◦, qDlog be the number of queries to the QA-BPR oracles, and
let ϵPRF an adversary’s chance to distinguish PRF from a random function. Let
N be the size of the password space for π. Then the advantage of an adversary
to win the QA-BPR game for the QA-KHAPE protocol in Figure 10.1 is bounded
by

AdvQA-KHAPEQA-BPR ≤ qDlog + qSend
N

+ ϵ

ϵ :=
qExec + qSend

ϵ−1
PRF

+
(qIC1 + qIC2 + q◦)

2 + (qDlogq
2
◦)

p
+
qExec
2n1

+
qExec + qSend

2n2

+
qSend · (q◦ + 1)

p
+

(2qIC1 + qIC2)

p
+

(qIC1)

2κ
+

(2q2IC1 + q2IC2)

p
+

(q2IC1)

2κ
+
qH2

p

We prove Theorem 10 in two steps: first, in Section 10.2.1, we intro-
duce the KHAPECORE-game that captures the quantum-annoying property of
QA-KHAPE in the generic group model. Briefly speaking, the game models
the aPAKE without key-confirmation values and is defined such that any
adversary can only win if they query the correct Diffie–Hellman completion
to the random oracle. This allows us to quantify the number of discrete
logarithm queries required, and to prove that every password guess requires
either an online interaction, or a respective discrete logarithm query. For-
mally, this is captured in Theorem 11 which we prove in Section 10.2.2.
Second, we reduce the QA-BPR-security of the QA-KHAPE protocol to the
KHAPECORE-game, which is represented by Theorem 10 and which we prove
in Section 10.3. Together, these yield the proof of the quantum-annoying
property.

10.2 security framework: the KHAPECORE game

We define a game KHAPECORE that captures the quantum annoying property
of the protocol in Figure 10.1, namely the indistinguishability of the keys
k1, k2 from random, which translates the approach of [ES21, Sec 3] into the
setting of an aPAKE.

10.2.1 Security Game

The game is defined over a set [L] of registrants; each l ∈ [L] is associated
with static, secret variables πl, skl, al, Bl and a static, public variable el. The
variables are set on initialization of the KHAPECORE-game via the Regis-
tration oracle (cf. Figure 10.2), along with uniformly random sampled

security framework: the KHAPECORE game 180

[ES21] Eaton and Stebila, “The ”Quan-
tum Annoying” Property of Password-
Authenticated Key Exchange Protocols”

challenge bit s. Additionally, each registrant l is associated with a counter
ctrl initialized to 0 corresponding to the interaction with the lth set of static
variables. Each interaction is called an instance. The adversary may interact
with an arbitrary number of registrants and instances through a set of oracles,
eventually allowing the adversary to obtain the keys k1, k2. The challenge bit
determines if these keys are real (if s = 0), in which case they are computed
from Diffie–Hellman session, or random (if s = 1).

Interface. The oracles take as input a value l matching a set of static
variables which are used by the game to respond to a query. Ephemeral
variables for an instance (l, ctrl) are stored for consistent use by the other
oracles. The PassiveExec oracle (cf. Figure 10.2) corresponds to a passive
execution of the protocol in Figure 10.1, excluding the key confirmation
values. The ActiveC or ActiveS oracles (cf. Figure 10.3), correspond to
interacting with, or impersonating, either party in the QA-KHAPE protocol,
and thus at most one of the two may be queried for each instance. The
Active oracles compute, depending on the value of the challenge bit s,
either a key value kl,ctrl,i from the input and the static variables or output a
uniformly random string. The GetStatic oracle (cf. Figure 10.2) mimics the
corruption of parties, which causes the game to reprogram the outputs of
the Active oracles into the respective positions before it returns the secret
static variables. Finally, the adversary is given access to the random oracles
H1,H2, the block-ciphers IC1, IC2 modeled by ideal ciphers and access to
an interface of the generic group model.

Registration(l)
1 : πl

$←− [N], skl $←− {0, 1}λ
2 : al, bl

$←− Zp

3 : Bl ← gbl , Al ← gal

4 : el ← IC1.E(πl, al, Bl, skl)
5 : Store πl, skl, el, Al, bl

PassiveExec(l)
1 : Get stored πl, skl, el, Al, bl
2 : Increment ctrl
3 : xl,ctrl , yl,ctrl

$←− Zp

4 : Xl,ctrl ← gxl,ctrl , Yl,ctrl ← gyl,ctrl

5 : cl,ctrl ← IC2.E(πl, Xl,ctrl)

6 : Store Yl,ctrl , ctxtl,ctrl
7 : return el, Yl,ctrl , cl,ctrl

GetStatic(l)
1 : Mark l corrupted
2 : Get stored πl, skl
3 : for m = 0, . . . , ctrl
4 : for kl,m, cl,m ← ActiveC(l, e, Y)
5 : a,B, sk← IC1.D(πl, e)
6 : hX = H1(l,m,Xl,m), hY = H1(l,m, Y)
7 : σC ← (Y ◦BhY))xl,m+hX ·a

8 : H2(l,m,Xl,m, Y, σC) := kl,m,1

9 : for kl,2 ← ActiveS(l, c)
10 : Get stored Yl,m

11 : X ← IC2.D(skl, c)
12 : hX = H1(l,m,X), hY = H1(l,m, Yl,m)

13 : σS ← (X ◦AhX
l,m)yl,m+hY ·bl,m

14 : H2(l,m,X, Yl,m, σS) := kl,m,2

15 : return (πl, skl)

Figure 10.2: KHAPECOREalgorithms.

Output. The KHAPECORE-game outputs 1 if the adversary’s output matches
the challenge bit s or if they if they query H2(l,m,X, Y, σl,C) (respectively
H2(l,m,X, Y, σl,S)) after submitting a query ActiveC(l, e, Y) (respectively
ActiveS(l, c)), but before querying GetStatic(l) on the instance. The ad-
versary is then said to win the game. The restriction on the GetStatic
oracle mimics the fact that forward secrecy cannot be achieved in the quan-
tum annoying model. The conditions under which the game outputs 1 are
analogous to the winning conditions of [ES21, Sec. 3.1].

security framework: the KHAPECORE game 181

ActiveS(l, c)
1 : Increment ctrl; Get stored skl
2 : if challenge s = 0 or l corrupted
3 : X ← IC2.D(skl, c)
4 : hX = H1(l, ctrl, X), hY = H1(l, ctrl, Yl,ctrl)

5 : σC ← (X ◦AhX
l)yl,ctrl+hY ·bl,ctrl

6 : kl,ctrl,2 = H2(l, ctrl, X, Yl,ctrl , σl,C)

7 : else
8 : kl,ctrl,2 ← {0, 1}

n

9 : return kl,ctrl,2

ActiveC(l, e, Y)

1 : Increment ctrl; Get stored πl

2 : a,B, sk← IC1.D(πl, e)

3 : xl,ctrl
$←− Zp, Xl,ctrl ← gxl,ctrl

4 : cl,ctrl ← IC2.E(sk, Xl,ctrl)

5 : if challenge s = 0 or l corrupted
6 : hX = H1(l, ctrl, Xl,ctrl), hY = H1(l, ctrl, Y)

7 : σC ← (Y ◦BhY))xl,ctrl+hX ·a

8 : kl,ctrl,1 = H2(l, ctrl, Xl,ctrl , Y, σC)

9 : else
10 : kl,ctrl,1 ← {0, 1}

n

11 : return kl,ctrl,1, cl,ctrl

Figure 10.3: KHAPECORE algorithms

10.2.2 Security of KHAPECORE

Now we are ready to define Theorem 11 which states, informally, that the
adversary’s chance to win the KHAPECORE-game is limited by their ability to
query the Dlog oracle on the correct group element, or any of the Active
oracles on a ciphertext encoding a group element the discrete logarithm of
which is known to them.

Theorem 11. Let qAEC , qAES be the number of queries to the Active and qPE
the number of queries to the PassiveExec oracle. Let qICi , qHi

, q◦, qDlog be the
number of queries to the ideal cipher, random oracle, group operation and
discrete logarithm oracles respectively. Then an adversary’s probability to win
the KHAPECORE-game is bounded by

P [KHAPECORE → 1] ≤ 1

2
+
qAEC + qAES + qDlog

N
+ ϵCORE

ϵCORE :=

// G0⇝G1

(qIC1 + qIC2 + q◦)
2 + (qDlogq

2
◦)

p
+

// G3⇝ G4

(qAEC + qAES) · (q◦ + 1)

p

+
qPE
2n1

+
qPE + qAE
2n2

// G2⇝G3

+
(2qIC1 + qIC2)

p
+

(qIC1)

2κ
+

(2q2IC1 + q2IC2)

p
+

(q2IC1)

2κ

// G1⇝ G2

.

Proof. In the KHAPECORE-game, the group elements in question are computed
as

σC =
(︁
Y ·BhY

)︁x+hX ·a
= Y x · Y hx·a ·BhY ·x ·Bhy·hx·a

= gxy · ghX ·a·y · ghY ·b·x · ghY ·hX ·a·b

= Xy ·AhX ·y ·XhY ·b ·AhX ·hY ·b =
(︁
X ·AhX

)︁y+hY ·b
= σS ,

where computing σC , σS depends on either the knowledge of Dlog(g,B) or
Dlog(g,X). The framework presented in Section 8.4, allows us to quantify
if these element are knowable based on the number of discrete logarithm
queries. This is possible, because the relevant group elements X,B are
encrypted under the ideal cipher. On a decryption query the ideal cipher can
return a public representations that does not admit a relation to a previously
received group element known by the adversary. To learn any such relation,
the adversary then has to query the Dlog oracle. Specifically, the relevant

security framework: the KHAPECORE game 182

group elements {Bl,i, Xl,i}i∈[N] correspond to decryptions of (e, c) using
a password guess πi and ski as keys respectively. In the KHAPECORE-game,
the correct pair Bl,i, Xl,i is chosen during the Registration phase and in the
Active oracles. Due to the values being encrypted by the ideal ciphers, the
simulation does not need to commit to any actual pair Bi, Xi.

We prove this by presenting a sequence of game hops where the initial
game G0 (cf. Section 10.2.2) is the KHAPECORE-game as defined in Sec-
tion 10.2.1, and G4 (cf. Section 10.2.2) is modified such that the keys k1, k2
are chosen uniformly random for every instance, and where the discrete loga-
rithm of g and the group elements B,X remain undefined unless sufficiently
constrained by queries to the Dlog and Active oracles. They are undefined
because the ciphertexts (e, c) are indistinguishable from random strings, and
the key pair (π, sk) is no longer defined from the PassiveExec or Active
oracles. That means that the correct values for (B,X) may correspond to
any of the N possible pairs. As long as there is a degree of freedom left for
these representations, the discrete logarithm relative to g is also not defined,
and the random oracle cannot be queried on the respective Diffie–Hellman
completion. These are only defined either if an instance is corrupted, or if
sufficiently many discrete logarithms have been queried, allowing to quantify
the adversary’s probability to win relative to the number of Dlog queries.

G0 (KHAPECORE-game). This is the KHAPECORE as described in Sec-
tion 10.2.1.

G1 (GGM). We modify the responses to the group operation ◦ and Dlog
oracle by simulating the generic group as described in Section 8.4. The
generator initially given to the adversary is g1 = g, which corresponds to
the secret representation 1. The secret representation of the neutral element
is 0. Recall that the password space is of size N . The secret variables are
represented as a set {χl,i, χl,i}i∈[N] corresponding to the pairsBl,i, Xl,i that
can be obtained when querying the ideal ciphers on possible values for πl or
skl. The ideal cipher ICi is maintained via a table TICi

. On query IC1.D(π, e),
if TIC1

[π, e] is defined, return TIC1
[π, e]. Otherwise, sample a random index

j $←− [N] for the secret representation and a public representation gV $←−
{0, 1}n, both of which are added to the table Tggm[χi,j] := gV ; The public
representation gV is returned. The simulation of IC2 is analog.

The modification changes the distribution of the group elements: public
representations returned from the ideal ciphers (on new inputs) in the simula-
tion are unique, whereas the adversary would expect a collision after√p new
queries. Additionally, the adversary would expect to see collisions between
random public representations, and the elements returned from (sufficiently
many) group operations. This happens with probability (qIC1 + qIC2 + q◦)

2/p.
Further, a group element may be assigned two distinct public representa-

tions, if first computed from group operations and then returned from an
IC query (or vice versa). For example, if the public representation gx was
returned from an IC query, and the representation gx = gx was assigned from
group operations, then the adversary may detect the modification by comput-
ing Dlog(g1, gx) = x. The probability that this happens for group elements
randomly assigned by the ideal cipher and for all Dlog queries is qDlogq2◦/p.

security framework: the KHAPECORE game 183

Registration(l)
1 : el

$←− {0, 1}n1

2 : Store el

PassiveExec(l)
1 : Get stored el; Increment ctrl
2 : cctr,X $←− {0, 1}n2

3 : yctr ← Zp, Yctr ← gyctr

4 : return (Yctr, ectr), (cctr,X)

Figure 10.4: Simulation in G3.

The modification of the ideal cipher
as in G2 is not reflected in the Fig-
ure 10.4.

Overall, the adversary can distinguish the two games with probability at
most

(qIC1 + qIC2 + q◦)
2 + qDlogq

2
◦

p
.

G2 (Ideal Ciphers Output). We change the ideal ciphers to output unique,
random values when queried on a new input. On query IC1.D(π, e), if
TIC1

[π, e] is not defined, the ideal cipher IC1 samples key pairs a, b $←− Zp and
sk← {0, 1}λ, generates public keys A = ga, B = gb and a key sk← {0, 1}λ,
and programs TIC1 [π, e] := a,B, sk. In the case of a collision, i. e., if (a,B, sk)
has been assigned to a value in the map TIC1

[π, ·] for any value ·, G2 aborts.
Since (a,B, sk) are independent random variables, the probability for an
abort is bounded by 2qIC1/p + qIC1/2

κ, neglecting a deduction for a simul-
taneous collision of all variables. Since the values a,B, sk are unique, two
different queries will never output the same values, whereas the adversary
would eventually expect a collision in G1. The same argument applies to
IC2. In total, the divergence is bounded by

2qIC1 + qIC2
p

+
(qIC1)

2κ
+

2q2IC1 + q2IC2
p

+
(q2IC1)

2κ
.

G3 (Random Ciphertexts). We modify the game to not sample any keys
π and sk and to output random strings e $←− {0, 1}n1 , c $←− {0, 1}n2 in the
PassiveExec and ActiveC oracles, which removes the game’s commitment
to any value stored in (e, c). This change is explicitely presented in the
simulation of Registration(l) in Figure 10.4 and of PassiveExec(l) in
Figure 10.4. Analogous to the modification in G2, the game aborts if the
values were previously assigned.

At the same time the GetStatic oracle is changed to reflect this modifi-
cation as depicted in Figure 10.5: the simulation first decrypts the ciphertext
using freshly sampled keys π and sk. The Dlog oracle provides the values
necessary to compute the Diffie–Hellman session such that the output of
the Active oracles can be programmed into the correct position of the ideal
cipher.

The distribution of (e, c) returned by PassiveExec and ActiveC is the
same as in G2 unless it aborts. Since (e, c) are sampled uniformly random
from the ciphertext space, the probability for this to happen is bounded by

qPE
2n1

+
qPE + qAEC

2n2
.

G4 (Embed Random Keys). The Active oracles are modified to always
return random strings k $←− {0, 1}λ for non-corrupted instances. To notice

security framework: the KHAPECORE game 184

GetStatic(l)
1 : Mark l corrupted

2 : πl ← [N], skl ← {0, 1}λ

3 : for m = 0, . . . , ctrl
4 : for kl,m, cl,m ← ActiveC(l, e, Y)
5 : a,B, sk← IC1.D(πl, e)

6 : X ← IC2.D(sk, cl,m); x← Dlog(g,X)

7 : hX = H1(l,m,X), hY = H1(l,m, Y)
8 : σl,m,C ← (Y ◦BhY))x+hX ·a

9 : H2(l,m,X, Y, σl,m,C) := kl,m,1

10 : for kl,2 ← ActiveS(l, c)
11 : X ← IC2.D(skl, c)
12 : a,B, sk2 ← IC1.D(πl, el); b← Dlog(g,B)

13 : hX = H1(m, l,X), hY = H1(m, l, Ym,l)
14 : σm,l,C ← (X ◦AhX)yl+hY ·b

15 : H2(m, l,X, Ym,l, σm,l,S) := km,l,2

16 : return (πl, skl)

Figure 10.5: Simulation of GetStatic(l) in G3.

this change, the adversary must query H2(ctr, X, Y, σi), where the Diffie–
Hellman completion σi depends on either the knowledge of Dlog(g,X) and
B, or the knowledge of Dlog(g,B) and X , both of which are not defined by
the game unless GetStatic has been queried, in which case the adversary
cannot win the game anymore.

The probability that Dlog(g,X) or Dlog(g,B) are knowable to the ad-
versary is bounded by Corollary 9, which tells us that the discrete logarithms
are defined if an only if b⃗, x⃗ are in the row span of D. Both, b⃗ and x⃗, are
basis vectors with a 1 at the position of the random index associated with the
respective secret variable. The number of basis vectors that can appear in the
row span are upper bounded by the rank of the matrix D, which is increased
by 1 for each Dlog query. Therefore, the probability that the adversary can
force the definition for any one value out ofN of these is bounded by qDlog/N .

Remark: Only public representations returned from the ideal ciphers, and
possibly group elements that come from group operation applied to these
group elements, provide useful input to the Dlog oracle, since the discrete
logarithm relation for group elements originating purely from g is already
known to the adversary. Therefore, the probability is

min(qIC1 + qIC2 , qDlog)

N
≤ qDlog

N
.

Additionally, the adversary may submit a query with a group element, the
discrete logarithm of which is known to them. The input ê to the ActiveC
oracle is either a value formerly returned from a previous query to Passive-
Exec, in which case the adversary must also query the ideal cipher and the
Dlog oracle and there is a chance of (q◦+1)/p that the discrete logarithm of
the group element decrypted by ActiveC is known to them. If ê was crafted
by the adversary, i. e., if they queried the ideal cipher on values â, B̂, ŝk such
that the discrete logarithm of B̂ is known to them, then they expect an 1/N

chance that there choice of p̂w was correct, and that ActiveC used b̂ to
compute the Diffie–Hellman session.

proof of apake security 185

[ES21] Eaton and Stebila, “The ”Quan-
tum Annoying” Property of Password-
Authenticated Key Exchange Protocols”

In total, this result in a divergence for ActiveC queries bounded by

qAEC · (q◦ + 1)

p
+
qAEC
N

.

For ActiveS , the adversary may submit a value ĉx for which the same ar-
guments hold, resulting in a total probability for either of both occurring
of

(qAEC + qAES) · (q◦ + 1)

p
+

(︁
qAEC + qAES

)︁
N

.

Finally, the adversary’s advantage to distinguish the simulation from the
real game based on Dlog queries depends on the knowledge of at least one
key from a Active oracle, resulting in a factor of min(qAEC + qAES , 1), thus
bounding the overall divergence by

min(qAEC + qAES , 1)·(︄
(qAEC + qAES) · (q◦ + 1)

p
+

(︁
qAEC + qAES +min(qIC1 + qIC2 , qDlog)

)︁
N

)︄

≤
(qAEC + qAES) · (q◦ + 1)

p
+

(︁
qAEC + qAES + qDlog

)︁
N

In G4, the PassiveExec and ActiveC oracle output random values as
ciphertexts e, c that do not commit to any values a,B, π or X. Particularly,
the values Dlog(g,X),Dlog(g,B) are defined only upon corruption or after
a number of Active and Dlog queries relative to the password spaceN . The
Active∗ oracles further output a random key independent of the challenge
bit s = 0. The adversary is left with either guessing the challenge bit, or
querying values to H2. This concludes the proof of Theorem 11.

10.3 proof of apake security

The security of the QA-KHAPE protocol (cf. Figure 10.1) is proven in the
QA-BPR (cf. Section 8.3) model. Recall that the adversary may interact
through the Execute, Send, Reveal, Corrupt and Test oracles after the
Registration phase, where the protocol defines how the principals respond.
Additionally, the adversary has access to the group operation, Dlog and
random oracle, ideal cipher and pseudo-random function PRF, as described
in Section 8.4. Here we prove, that the adversary is bounded as stated in
Theorem 10.

Proof. We consider a sequence of games starting withG0, which corresponds
to the QA-KHAPE protocol illustrated in Figure 10.1. As we progress to G3,
the sessions keys are chosen independent and uniformly at random, ensuring
that the adversary A is reduced to a simple guessing attack. Throughout
this reduction process, we present an adversary B on the KHAPECORE-game,
which maintains a mapping between instances of the KHAPECORE-game and
instances of principals in the QA-BPR-model. The oracles provided by the
KHAPECORE challenger are referred to as KHAPECORE.Oracle. Throughout
the sequence of game hope we utilize a procedure called CoreMap, which
bears resemblance to the getUV procedure described in [ES21, App. B.2].

proof of apake security 186

CoreMap. We define a function CoreMap(C, S, sid) which maps parties and
their respective sessions in the QA-BPR model onto the KHAPECORE. Recall
that a session in the QA-BPR model is denoted as ℓ = (i, j, k), where i, j are
parties and k indicates that this is the k-th session between i and j. Further,
each such session is associated with a unique string sid. In the following, we
consider the parties C and S instead of i and j.

The function CoreMap defines the counter l̄, which maps parties in the
QA-BPR model to an instance of the KHAPECORE. Similarly, the counters and
ctrl̄, ctrC,S , ctrC,S,sid corresponding to individual sessions of this party. The
mapping is required, because each party must have a consistent view on the
output of the generic group model oracles, which are internally simulated
using static variables.

All counters are initialized to zero, and incremented throughout the
simulation. The CoreMap works as follows:

• If the ctrC,S,sid > 0, the respective transcript ectrC,S
, YctrC,S ,ctrC,S,sid , cctrC,S ,ctrC,S,sid

has been generated previously and is returned.

• Otherwise, if ctrC,S = 0, then this is the first interaction with party
l. The reduction sets ctrC,S ← l̄, ctrl̄ ← 1, increments l̄, correspond-
ing to ctrl in the KHAPECORE, and sets ctrC,S,sid ← 1. The oracle
KHAPECORE.PassiveExec(ctrC,S) is queried; the output stored and re-
turned.

• If ctrC,S > 0, The reduction sets ctrC,S,sid ← ctrl̄, increments ctrl̄
and queries KHAPECORE.PassiveExec(ctrC,S). The output is stored in
ectrC,S

, YctrC,S ,ctrC,S,sid , cctrC,S ,ctrC,S,sid and returned.

G0 (Figure 10.1). This is the real protocol.

G1 (Passive Sessions). The game is modified by replacing the keys
k1, k2 with random values for passively observed sessions. Particularly,
on input Execute(C,S, sid), we set k1 = k2 ← {0, 1}λ and compute the
key confirmation values τ, γ and sessions keys using the PRF. The adver-
saries oracle calls to all instances l for which Execute has been called
are simulated as follows: First, the simulation invokes CoreMap(C,S, sid)
to obtain k1, c′X from KHAPECORE.ActiveC(ctrC,S,sid, e, Y), is used to com-
pute the confirmation values τ, γ. On a Corrupt(C, S) query, the extrac-
tion calls KHAPECORE.GetStatic(ctrC,S) returning πl, skl, which programs
the key k1 returned by a KHAPECORE.Active oracle into the correct posi-
tion of the random oracle H2. The extraction receives a,B, sk from the
ideal cipher on query IC1.D(sk1, e) as well as the discrete logarithm b from
KHAPECORE.Dlog(B). It then computes A ← ga. Let Tπ be a table corre-
sponding to allN passwords. The extraction sets π ← P [sk1], i. e., the sk1’th
entry of the table and returns π, (e,A, b, sk), which is a perfect simulation.

For the queries H1(sid, C, S, ∗), if the entry ctrC,S,sid is defined, the
query is forwarded to the KHAPECORE-challenger, and the result is returned.
Otherwise, a random value is sampled uniformly at random from the range
of H1, and a table is maintained for consistent responses. H2(sid, C, S, ∗)
is simulated analogous to H1. All queries to IC1 and IC2 are forwarded to
the KHAPECORE-challenger. In Section 10.3 the divergence qH2

/p from this

proof of apake security 187

simulation, i. e., the random oracle and ideal cipher queries, has already
been discussed.

Finally, the adversary may query a Test or Reveal query, receiving the
session key from the KHAPECORE-game, In the first case, if a Test query has
been received,

extraction either simulates either G0, if the KHAPECORE challenge bit is
zero, or G1, if the KHAPECORE challenge bit s is one. When s = 0, the values
of e, cX as well as τ, γ are distributed as expected (i. e., as in G0), since the
keys k1 = k2 are identical and thus γ can also be computed from k1. On the
other hand, if s = 1, the key k1 is chosen uniformly random as expected,
and thus the key confirmation values also have the expected distribution.
In the second case, if a Reveal query has been received, key k1 returned
from the simulation is real-or-random, but would be expected to always be
real, resulting in a divergence.

However, from an adversary detecting this change an extraction of a win-
ning query to the KHAPECORE can be provided: In order to notice the change,
the adversary A has to query the random oracle onH2(sid, C, S,X, Y, σC) or
H2(sid, C, S,X, Y, σS), both of which allow to instantly win the KHAPECORE-
game. Note that the key confirmation values returned by the aPAKE im-
pact the advantage to win the KHAPECORE, since even a passive execution
allows to verify if a derived session key is correct. Therefore, the term
min(qAEC +qAES , 1) is 1. Further, the inputs to CoreMap.Active∗ are sampled
in KHAPECORE.PassiveExec such that no new group elements, the discrete
logarithm of which is knowable to the adversary, have to be considered in
the probability to win the KHAPECORE-game. Consequently, the number of
these queries is exactly the number of Execute queries. The probability to
detect the difference between game G0 and G1 is then bounded by

qDlog
N

+ ϵpassiv +
qH2

p

ϵpassiv :=
(qIC1 + qIC2 + q◦)

2 + (qDlogq
2
◦)

p
+
q2IC1 + qExecute

2n1
+
q2IC2 + qExecute

2n2
.

G2 (Active Sessions). In G2, the modifications (i. e., replacing k1, k2 with
random strings),are extended to active sessions:

• For an active session impersonating a client C, the oracle calls are
modified as follows: On input Send(C, l,M = (S, sid)) the simulation
responds with the values e, Y retrieved from KHAPECORE.PassiveExec.
On input Send(C, l,M = (S, sid, cX , τ)) we sample the k2 ← {0, 1}λ

uniformly at random and computes τ ′ ← PRF(k2, 1). The session key
and the key confirmation value are generated from k1, k2 based on
τ = τ ′ as in a genuine execution of the protocol.

• For an active session impersonating a server S, the oracle calls are
modified as follows: On input Send(C, l,M = (S, sid, e, Y)) the sim-
ulation samples a uniformly random value for k1 ← {0, 1}λ and
computes the key confirmation value τ using the PRF. On input
Send(C, l,M = (S, sid, γ)) we compute γ′ ← PRF(k1, 2) and set
the session key conditionally on the outcome of γ = γ′ (i. e., as in the
real protocol).

proof of apake security 188

On queries to the random oracle, ideal cipher, Reveal and Corrupt the
reduction behaves identical to G1, and thus the divergence is identical.
Eventually, the adversary may query a Test or Reveal query receiving a
session key from the KHAPECORE. To bound the adversaries chance to detect
the modification, a similar extractor of a winning query to the KHAPECORE-
game is provided. Similarly to Section 10.3, the reduction calls CoreMap
to map instances of the QA-BPR-game to instances of the KHAPECORE-game.
The extraction of a winning query on the adversary Send queries to clients
and servers is examined separately.

Impersonation of clients: On Send(C, l,M = (S, sid)) the extraction calls
CoreMap(C,S, sid), which causes ctrC,S to become defined if it previously
was not, and the retrieved values e, Y are returned. On Send(C, i,M =

(S, sid, cX , τ)) the reduction calls CoreMap(C, S, sid) to subsequently obtain
k2 ← KHAPECORE.Active(ctrC,S , cX). The key confirmation value τ ′ is
computed from the obtained key using the PRF. The session key and key
confirmation value are set conditioned on τ = τ ′ as in the real protocol.

Impersonation of Server: On Send(S, i,M = (C, sid, j, e, Y)), the
reduction calls CoreMap(C,S, sid), which causes ctrC,S to become de-
fined if it previously was not. Then the reduction calls k1 ←
KHAPECORE.Active(ctrC,S , e, Y) and computes the key confirmation value
τ genuinely using the PRF, and returns cX , τ . On Send(S, i,M =

(C, j, γ, sid)), the reduction computes γ′ from the key k2 using the PRF and
compares this to γ. If they match, the session key is set to K1 ← PRF(k1, 0),
and otherwise, to ⊥. For Send the arguments are analogous to G1: If
Test was queried, the reduction simulates G1 (and thus G0) perfectly if
the KHAPECORE challenge bit s = 0, and simulates G2 if s = 1(except for
inconsistencies in the random oracle). Otherwise, the adversary can de-
tect the change only by querying the random oracle on either of the two
inputs H2(sid, C, S,X, Y, σC) or H2(sid, C, S,X, Y, σS), both of which are
winning queries for the reduction in KHAPECORE.

The number of Active queries for which the adversary may choose the
input is bounded by the number of Send queries, bounding the difference
between game G1 and G2 by

(qDlog + qSend)

N
+ ϵactive +

qH2

p
,

with

ϵactive :=
(qIC1 + qIC2 + q◦)

2 + (qDlogq
2
◦)

p
+
q2IC1 + qSend

2n1
+
q2IC2 + qSend

2n2
.

G3 (Random Sessions Keys). The final modification in G3 (i. e., replacing
the session keys with random strings) was discussed in Section 10.3, resulting
in the term (qExec + qSend)ϵPRF. The sessions keys are now uniformly random
and independent of the password and credentials leaving adversary to a
guessing attack.

The probability that the adversary can distinguishG0 fromG3 is bounded
by

(qDlog + qSend)

N
+
qH2

p
+ (qExec + qSend)ϵPRF + ϵ ,

proof of apake security 189

with

ϵ ≤
(qIC1 + qIC2 + q◦)

2 + (qDlogq
2
◦)

p
+
(q2IC1 + qSend + qExec)

2n1
+
(q2IC2 + qSend + qExec)

2n2
.

This conclude the proof.

Conclusion

We have demonstrated the security achievable in higher-level protocols when
secure post-quantum cryptography is employed, as well as security that can
be achieved even without post-quantum assumptions. At the same time,
the finding show that secure post-quantum cryptographic primitives can
be integrated into higher-level protocols to ensure their resilience against
quantum adversaries.

At first, our findings reveal that robust security be maintained for the
mutual authentication deployed in the LDACS air-to-ground communication
protocol when switching over to quantum-secure primitives. Specifically we
have shown that LDACS achieves Entity Authentication, capturing that the
promise that each party is assured that they interact with their intended
peer, and that their peer is aware of the identity of the party. Further, we
have shown that Key Authentication holds, giving the parties assurance that
their intended peer and only their intended peer knows the secret key. Both
properties hold when the signature is instantiated with a post-quantum,
EUF-CMA signature, and when the KEM is instantiated with a post-quantum
IND-CPA KEM.

Secondly, our research highlights the potential of enhancing existing
protocols, ensuring robust security in the face of emerging quantum threats.
This enhancement is based on intractability assumptions that remain dif-
ficult for classical computers while being solvable by quantum computers.
Surprisingly, the enhancement allow to achieve a notion of quantum-security.

The common point across Part II and Part III is that while new quantum-
secure cryptographic schemes may bring with them significant vulnerabilities,
cryptography is “in good shape” overall. That means, it appears that one can
construct quantum-secure schemes from primitives such a hash functions
and lattices which can be deployed in higher level protocols without loosing
important properties. On the other side, even if those scheme will not
be deemed fully secure, we may still have hope for some level of security
that allows to scale the resources an adversary has to spend in order to
compromise cryptographic protocols.

191

Bibliography

[Aar23] Scott Aaronson. Introduction to Quantum Information Science Lecture Notes. 2023. url: https://www.
scottaaronson.com/qclec.pdf (cit. on p. 31).

[AA03] Scott Aaronson and Andris Ambainis. “Quantum Search of Spatial Regions”. In: 2003, pp. 200–209. doi:
10.1109/SFCS.2003.1238194 (cit. on pp. 109, 110).

[AHH21] Michel Abdalla, Björn Haase, and Julia Hesse. “Security Analysis of CPace”. In: Advances in Cryptology -
ASIACRYPT 2021 - 27th International Conference on the Theory and Application of Cryptology and Information
Security, Singapore, December 6-10, 2021, Proceedings, Part IV. Ed. by Mehdi Tibouchi and Huaxiong Wang.
Vol. 13093. Lecture Notes in Computer Science. Springer, 2021, pp. 711–741. doi: 10.1007/978-3-030-
92068-5_24. url: https://doi.org/10.1007/978-3-030-92068-5%5C_24 (cit. on p. 175).

[Aer21] Aeronautical Radio, Incorporated (ARINC). Internet Protocol Suite (IPS) for Aeronautical Safety Services Part
1 Airborne IPS System Technical Requirements. ARINC SPECIFICATION 858P1. June 2021 (cit. on pp. 155,
160).

[Agg+17a] Divesh Aggarwal, Antoine Joux, Anupam Prakash, and Miklos Santha. A New Public-Key Cryptosystem via
Mersenne Numbers. Cryptology ePrint Archive, Report 2017/481. https://eprint.iacr.org/2017/481.
2017 (cit. on pp. 10, 28, 47).

[Agg+17b] Divesh Aggarwal, Antoine Joux, Anupam Prakash, and Mikos Santha. Mersenne-756839. Technical report,
National Institute of Standards and Technology. available at https://csrc.nist.gov/Projects/post-
quantum-cryptography/post-quantum-cryptography-standardization/round-1-submissions.
2017 (cit. on pp. 10, 28, 47–49, 65–67).

[Ajt96] Miklós Ajtai. “Generating hard instances of lattice problems (extended abstract)”. In: Electron. Colloquium
Comput. Complex. TR96 (1996). url: https://api.semanticscholar.org/CorpusID:6864824 (cit. on
p. 59).

[AKS01] Miklós Ajtai, Ravi Kumar, and D. Sivakumar. “A sieve algorithm for the shortest lattice vector problem”. In:
2001, pp. 601–610. doi: 10.1145/380752.380857 (cit. on pp. 61, 105).

[Alb+20a] Martin R. Albrecht, Shi Bai, Pierre-Alain Fouque, Paul Kirchner, Damien Stehlé, and Weiqiang Wen. “Faster
Enumeration-Based Lattice Reduction: Root Hermite Factor k1/(2k) Time kk/8+o(k)”. In: 2020, pp. 186–212.
doi: 10.1007/978-3-030-56880-1_7 (cit. on pp. 61, 62, 105, 119).

[Alb+21] Martin R. Albrecht, Shi Bai, Jianwei Li, and Joe Rowell. “Lattice Reduction with Approximate Enumeration
Oracles - Practical Algorithms and Concrete Performance”. In: 2021, pp. 732–759. doi: 10.1007/978-3-
030-84245-1_25 (cit. on pp. 61, 105).

[Alb+18] Martin R. Albrecht, Benjamin R. Curtis, Amit Deo, Alex Davidson, Rachel Player, Eamonn W. Postlethwaite,
Fernando Virdia, and Thomas Wunderer. “Estimate All the LWE, NTRU Schemes!” In: 2018, pp. 351–367.
doi: 10.1007/978-3-319-98113-0_19 (cit. on pp. 61, 105, 124).

[Alb+19a] Martin R. Albrecht, Léo Ducas, Gottfried Herold, Elena Kirshanova, Eamonn W. Postlethwaite, and Marc
Stevens. “The General Sieve Kernel and New Records in Lattice Reduction”. In: 2019, pp. 717–746. doi:
10.1007/978-3-030-17656-3_25 (cit. on pp. 61, 105).

[Alb+19b] Martin R. Albrecht, Vlad Gheorghiu, Eamonn W. Postlethwaite, and John M. Schanck. Estimating quantum
speedups for lattice sieves. Cryptology ePrint Archive, Paper 2019/1161. https://eprint.iacr.org/
2019/1161. 2019. url: https://eprint.iacr.org/2019/1161 (cit. on p. 40).

[Alb+20b] Martin R. Albrecht, Vlad Gheorghiu, Eamonn W. Postlethwaite, and John M. Schanck. “Estimating Quantum
Speedups for Lattice Sieves”. In: 2020, pp. 583–613. doi: 10.1007/978-3-030-64834-3_20 (cit. on
pp. 12, 41, 64, 106).

[Alb+17] Martin R. Albrecht, Florian Göpfert, Fernando Virdia, and Thomas Wunderer. Revisiting the Expected Cost
of Solving uSVP and Applications to LWE. Cryptology ePrint Archive, Report 2017/815. https://eprint.
iacr.org/2017/815. 2017 (cit. on p. 60).

[APS15a] Martin R. Albrecht, Rachel Player, and Sam Scott. On The Concrete Hardness Of Learning With Errors.
Cryptology ePrint Archive, Report 2015/046. https://eprint.iacr.org/2015/046. 2015 (cit. on p. 60).

[APS15b] Martin R. Albrecht, Rachel Player, and Sam Scott. “On the concrete hardness of Learning with Errors”. In:
Journal of Mathematical Cryptology 9.3 (2015), pp. 169–203. doi: doi:10.1515/jmc-2015-0016. url:
https://doi.org/10.1515/jmc-2015-0016 (cit. on pp. 105, 113, 125).

193

https://www.scottaaronson.com/qclec.pdf
https://www.scottaaronson.com/qclec.pdf
https://doi.org/10.1109/SFCS.2003.1238194
https://doi.org/10.1007/978-3-030-92068-5_24
https://doi.org/10.1007/978-3-030-92068-5_24
https://doi.org/10.1007/978-3-030-92068-5%5C_24
https://eprint.iacr.org/2017/481
https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-1-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-1-submissions
https://api.semanticscholar.org/CorpusID:6864824
https://doi.org/10.1145/380752.380857
https://doi.org/10.1007/978-3-030-56880-1_7
https://doi.org/10.1007/978-3-030-84245-1_25
https://doi.org/10.1007/978-3-030-84245-1_25
https://doi.org/10.1007/978-3-319-98113-0_19
https://doi.org/10.1007/978-3-030-17656-3_25
https://eprint.iacr.org/2019/1161
https://eprint.iacr.org/2019/1161
https://eprint.iacr.org/2019/1161
https://doi.org/10.1007/978-3-030-64834-3_20
https://eprint.iacr.org/2017/815
https://eprint.iacr.org/2017/815
https://eprint.iacr.org/2015/046
https://doi.org/doi:10.1515/jmc-2015-0016
https://doi.org/10.1515/jmc-2015-0016

bibliography 194

[Ali21] Dante Alighieri. Divine Comedy. 1321 (cit. on p. 3).

[Alk+16] Erdem Alkim, Léo Ducas, Thomas Pöppelmann, and Peter Schwabe. “Post-quantum Key Exchange - A New
Hope”. In: 2016, pp. 327–343 (cit. on pp. 61, 105).

[AK17] Andris Ambainis and Martins Kokainis. “Quantum algorithm for tree size estimation, with applications
to backtracking and 2-player games”. In: Proceedings of the 49th Annual ACM SIGACT Symposium on
Theory of Computing, STOC 2017, Montreal, QC, Canada, June 19-23, 2017. Ed. by Hamed Hatami, Pierre
McKenzie, and Valerie King. ACM, 2017, pp. 989–1002. doi: 10.1145/3055399.3055444. url: https:
//doi.org/10.1145/3055399.3055444 (cit. on pp. 12, 37, 105).

[Amy+16] Matthew Amy, Olivia Di Matteo, Vlad Gheorghiu, Michele Mosca, Alex Parent, and John M. Schanck.
“Estimating the Cost of Generic Quantum Pre-image Attacks on SHA-2 and SHA-3”. In: 2016, pp. 317–337.
doi: 10.1007/978-3-319-69453-5_18 (cit. on pp. 11, 42, 43, 58, 84, 87, 99–102).

[Ano24] Anonymous. “Quantum Disadvantage”. In: SIGBOVIK 2024. 2024, pp. 199–205. url: https://www.
sigbovik.org/2024/proceedings.pdf (cit. on p. 6).

[Aon+18] Yoshinori Aono, Phong Q. Nguyen, Takenobu Seito, and Junji Shikata. “Lower Bounds on Lattice Enumeration
with Extreme Pruning”. In: 2018, pp. 608–637. doi: 10.1007/978-3-319-96881-0_21 (cit. on pp. 64,
113, 119, 125, 127, 131).

[ANS18] Yoshinori Aono, Phong Q. Nguyen, and Yixin Shen. “Quantum Lattice Enumeration and Tweaking Discrete
Pruning”. In: 2018, pp. 405–434. doi: 10.1007/978-3-030-03326-2_14 (cit. on pp. 12, 61, 64, 105, 106,
108, 110, 113, 117, 125).

[Aon+16] Yoshinori Aono, Yuntao Wang, Takuya Hayashi, and Tsuyoshi Takagi. “Improved Progressive BKZ Algorithms
and Their Precise Cost Estimation by Sharp Simulator”. In: 2016, pp. 789–819. doi: 10.1007/978-3-662-
49890-3_30 (cit. on p. 61).

[Aru+19] Frank Arute et al. “Quantum supremacy using a programmable superconducting processor”. In: Nature
574.7779 (Sept. 2019), pp. 505–510. issn: 1476-4687. doi: 10.1038/s41586-019-1666-5. url:
https://doi.org/10.1038/s41586-019-1666-5 (cit. on p. 6).

[BG14] Shi Bai and Steven D Galbraith. “Lattice decoding attacks on binary LWE”. In: Information Security and
Privacy: 19th Australasian Conference, ACISP 2014, Wollongong, NSW, Australia, July 7-9, 2014. Proceedings
19. Springer. 2014, pp. 322–337 (cit. on p. 124).

[Bai+23] Shi Bai, Maya-Iggy van Hoof, Floyd B. Johnson, Tanja Lange, and Tran Ngo. “Concrete Analysis of Quantum
Lattice Enumeration”. In: Advances in Cryptology - ASIACRYPT 2023. Lecture Notes in Computer Science.
Springer-Verlag, 2023 (cit. on pp. 41, 106, 136).

[Bal+18] Marco Baldi, Alessandro Barenghi, Franco Chiaraluce, Gerardo Pelosi, and Paolo Santini. LEDAcrypt: Low-
dEnsity parity-chck coDe-bAsed cryptographic systems. Technical report, National Institute of Standards and
Technology. available at https://csrc.nist.gov/Projects/post-quantum-cryptography/post-
quantum-cryptography-standardization/round-2-submissions. 2018 (cit. on p. 65).

[Bec+16] Anja Becker, Léo Ducas, Nicolas Gama, and Thijs Laarhoven. “New directions in nearest neighbor searching
with applications to lattice sieving”. In: Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 2016, Arlington, VA, USA, January 10-12, 2016. Ed. by Robert Krauthgamer.
SIAM, 2016, pp. 10–24. doi: 10.1137/1.9781611974331.ch2. url: https://doi.org/10.1137/1.
9781611974331.ch2 (cit. on pp. 61, 105).

[Beg+23] Hugo Beguinet, Céline Chevalier, David Pointcheval, Thomas Ricosset, and Mélissa Rossi. “GeT A CAKE:
Generic Transformations From Key Encaspulation Mechanisms To Password Authenticated Key Exchanges”.
In: Kyoto, Japan: Springer-Verlag, 2023, pp. 516–538. isbn: 978-3-031-33490-0. doi: 10.1007/978-3-
031-33491-7_19. url: https://doi.org/10.1007/978-3-031-33491-7_19 (cit. on p. 175).

[Bel06] Mihir Bellare. “New Proofs for NMAC and HMAC: Security without collision-resistance”. In: Advances in
Cryptology - CRYPTO 2006, 26th Annual International Cryptology Conference, Santa Barbara, California,
USA, August 20-24, 2006, Proceedings. Ed. by Cynthia Dwork. Vol. 4117. Lecture Notes in Computer
Science. Springer, 2006, pp. 602–619. doi: 10.1007/11818175_36. url: https://doi.org/10.1007/
11818175%5C_36 (cit. on p. 162).

[BHK09] Mihir Bellare, Dennis Hofheinz, and Eike Kiltz. “Subtleties in the Definition of IND-CCA: When and
How Should Challenge-Decryption be Disallowed?” In: IACR Cryptol. ePrint Arch. (2009), p. 418. url:
http://eprint.iacr.org/2009/418 (cit. on p. 21).

[BHK15] Mihir Bellare, Dennis Hofheinz, and Eike Kiltz. “Subtleties in the Definition of IND-CCA: When and How
Should Challenge Decryption Be Disallowed?” In: J. Cryptol. 28.1 (2015), pp. 29–48. doi: 10.1007/S00145-
013-9167-4. url: https://doi.org/10.1007/s00145-013-9167-4 (cit. on p. 21).

https://doi.org/10.1145/3055399.3055444
https://doi.org/10.1145/3055399.3055444
https://doi.org/10.1145/3055399.3055444
https://doi.org/10.1007/978-3-319-69453-5_18
https://www.sigbovik.org/2024/proceedings.pdf
https://www.sigbovik.org/2024/proceedings.pdf
https://doi.org/10.1007/978-3-319-96881-0_21
https://doi.org/10.1007/978-3-030-03326-2_14
https://doi.org/10.1007/978-3-662-49890-3_30
https://doi.org/10.1007/978-3-662-49890-3_30
https://doi.org/10.1038/s41586-019-1666-5
https://doi.org/10.1038/s41586-019-1666-5
https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-2-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-2-submissions
https://doi.org/10.1137/1.9781611974331.ch2
https://doi.org/10.1137/1.9781611974331.ch2
https://doi.org/10.1137/1.9781611974331.ch2
https://doi.org/10.1007/978-3-031-33491-7_19
https://doi.org/10.1007/978-3-031-33491-7_19
https://doi.org/10.1007/978-3-031-33491-7_19
https://doi.org/10.1007/11818175_36
https://doi.org/10.1007/11818175%5C_36
https://doi.org/10.1007/11818175%5C_36
http://eprint.iacr.org/2009/418
https://doi.org/10.1007/S00145-013-9167-4
https://doi.org/10.1007/S00145-013-9167-4
https://doi.org/10.1007/s00145-013-9167-4

bibliography 195

[BPR00] Mihir Bellare, David Pointcheval, and Phillip Rogaway. “Authenticated Key Exchange Secure against Dictio-
nary Attacks”. In: Advances in Cryptology - EUROCRYPT 2000, International Conference on the Theory and
Application of Cryptographic Techniques, Bruges, Belgium, May 14-18, 2000, Proceeding. Ed. by Bart Preneel.
Vol. 1807. Lecture Notes in Computer Science. Springer, 2000, pp. 139–155. doi: 10.1007/3-540-45539-
6_11. url: https://doi.org/10.1007/3-540-45539-6%5C_11 (cit. on pp. 148, 158).

[Bel13] Aleksandrs Belovs. Quantum Walks and Electric Networks. 2013. arXiv: 1302.3143 [quant-ph] (cit. on
p. 35).

[Ben89] Charles H. Bennett. “Time/Space Trade-Offs for Reversible Computation”. In: SIAM Journal on Computing
18.4 (1989), pp. 766–776. doi: 10.1137/0218053. eprint: https://doi.org/10.1137/0218053. url:
https://doi.org/10.1137/0218053 (cit. on pp. 32, 38).

[Ben23] Huck Bennett. “The Complexity of the Shortest Vector Problem”. In: SIGACT News 54.1 (Mar. 2023), pp. 37–
61. issn: 0163-5700. doi: 10.1145/3586165.3586172. url: https://doi.org/10.1145/3586165.
3586172 (cit. on p. 60).

[BT21a] Robin M. Berger and Marcel Tiepelt. “On Forging SPHINCS+-Haraka Signatures on a Fault-Tolerant
Quantum Computer”. In: Progress in Cryptology - LATINCRYPT 2021 - 7th International Conference on
Cryptology and Information Security in Latin America, Bogotá, Colombia, October 6-8, 2021, Proceedings. Ed.
by Patrick Longa and Carla Ràfols. Vol. 12912. Lecture Notes in Computer Science. Springer, 2021, pp. 44–
63. doi: 10.1007/978-3-030-88238-9_3. url: https://doi.org/10.1007/978-3-030-88238-9_3
(cit. on pp. 12, 17, 29, 31, 47, 83, 98, 99).

[BT21b] Robin M. Berger and Marcel Tiepelt. On Forging SPHINCS+-Haraka Signatures on a Fault-tolerant Quantum
Computer. Cryptology ePrint Archive, Paper 2021/1484. https://eprint.iacr.org/2021/1484. 2021.
doi: 10.1007/978-3-030-88238-9_3. url: https://eprint.iacr.org/2021/1484 (cit. on pp. 12, 17,
31, 47, 83).

[Ber+17] Daniel J. Bernstein, Nadia Heninger, Paul Lou, and Luke Valenta. Post-quantum RSA. Cryptology ePrint
Archive, Paper 2017/351. https://eprint.iacr.org/2017/351. 2017. url: https://eprint.iacr.
org/2017/351 (cit. on p. 7).

[Ber+14] Daniel J. Bernstein, Daira Hopwood, Andreas Hülsing, Tanja Lange, Ruben Niederhagen, Louiza Pa-
pachristodoulou, Peter Schwabe, and Zooko Wilcox-O’Hearn. “SPHINCS: practical stateless hash-based
signatures”. In: IACR Cryptol. ePrint Arch. (2014), p. 795. url: http://eprint.iacr.org/2014/795
(cit. on p. 51).

[Ber+11] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. Cryptographic sponge functions. 2011.
url: https://keccak.team/sponge_duplex.html (cit. on pp. 59, 102).

[Bes05] Arvid J Bessen. “Lower bound for quantum phase estimation”. In: Physical Review A 71.4 (2005), p. 042313
(cit. on p. 110).

[Beu+19] Marc Beunardeau, Aisling Connolly, Rémi Géraud, and David Naccache. “On the Hardness of the Mersenne
Low Hamming Ratio Assumption”. In: 2019, pp. 166–174. doi: 10.1007/978-3-030-25283-0_9 (cit. on
pp. 29, 49–51, 66).

[Bin+23] Nina Bindel, Xavier Bonnetain, Marcel Tiepelt, and Fernando Virdia. Quantum Lattice Enumeration in
Limited Depth. Cryptology ePrint Archive, Paper 2023/1423. https://eprint.iacr.org/2023/1423.
2023. url: https://eprint.iacr.org/2023/1423 (cit. on pp. 13, 17, 31, 36, 41, 47, 64, 105, 107–109,
116–119, 125–127, 131, 132).

[Bin+24] Nina Bindel, Xavier Bonnetain, Marcel Tiepelt, and Fernando Virdia. “Quantum Lattice Enumeration in
Limited Depth”. In: Advances in Cryptology – CRYPTO 2024. Ed. by Leonid Reyzin and Douglas Stebila.
Cham: Springer Nature Switzerland, 2024, pp. 72–106. isbn: 978-3-031-68391-6. doi: 10.1007/978-3-
031-68391-6_3. url: https://doi.org/10.1007/978-3-031-68391-6_3 (cit. on pp. 13, 17, 30, 31,
47, 105).

[Bin+19] Nina Bindel, Jacqueline Brendel, Marc Fischlin, Brian Goncalves, and Douglas Stebila. “Hybrid Key Encapsu-
lation Mechanisms and Authenticated Key Exchange”. In: Post-Quantum Cryptography - 10th International
Conference, PQCrypto 2019, Chongqing, China, May 8-10, 2019 Revised Selected Papers. Ed. by Jintai Ding
and Rainer Steinwandt. Vol. 11505. Lecture Notes in Computer Science. Springer, 2019, pp. 206–226. doi:
10.1007/978-3-030-25510-7_12. url: https://doi.org/10.1007/978-3-030-25510-7%5C_12
(cit. on pp. 157, 162).

[Boe+21] Franziska Boenisch, Reinhard Munz, Marcel Tiepelt, Simon Hanisch, Christiane Kuhn, and Paul Francis.
“Side-Channel Attacks on Query-Based Data Anonymization”. In: Proceedings of the 2021 ACM SIGSAC
Conference on Computer and Communications Security. CCS ’21. Virtual Event, Republic of Korea: Association
for Computing Machinery, 2021, pp. 1254–1265. isbn: 9781450384544. doi: 10.1145/3460120.3484751.
url: https://doi.org/10.1145/3460120.3484751 (cit. on p. 16).

https://doi.org/10.1007/3-540-45539-6_11
https://doi.org/10.1007/3-540-45539-6_11
https://doi.org/10.1007/3-540-45539-6%5C_11
https://arxiv.org/abs/1302.3143
https://doi.org/10.1137/0218053
https://doi.org/10.1137/0218053
https://doi.org/10.1137/0218053
https://doi.org/10.1145/3586165.3586172
https://doi.org/10.1145/3586165.3586172
https://doi.org/10.1145/3586165.3586172
https://doi.org/10.1007/978-3-030-88238-9_3
https://doi.org/10.1007/978-3-030-88238-9_3
https://eprint.iacr.org/2021/1484
https://doi.org/10.1007/978-3-030-88238-9_3
https://eprint.iacr.org/2021/1484
https://eprint.iacr.org/2017/351
https://eprint.iacr.org/2017/351
https://eprint.iacr.org/2017/351
http://eprint.iacr.org/2014/795
https://keccak.team/sponge_duplex.html
https://doi.org/10.1007/978-3-030-25283-0_9
https://eprint.iacr.org/2023/1423
https://eprint.iacr.org/2023/1423
https://doi.org/10.1007/978-3-031-68391-6_3
https://doi.org/10.1007/978-3-031-68391-6_3
https://doi.org/10.1007/978-3-031-68391-6_3
https://doi.org/10.1007/978-3-030-25510-7_12
https://doi.org/10.1007/978-3-030-25510-7%5C_12
https://doi.org/10.1145/3460120.3484751
https://doi.org/10.1145/3460120.3484751

bibliography 196

[Boe+18] Koen de Boer, Léo Ducas, Stacey Jeffery, and Ronald de Wolf. “Attacks on the AJPS Mersenne-Based
Cryptosystem”. In: 2018, pp. 101–120. doi: 10.1007/978-3-319-79063-3_5 (cit. on pp. 49, 51, 61).

[BS23] Dan Boneh and Victor Shoup. A Graduate Course in Applied Cryptography. 2023. url: https://toc.
cryptobook.us/ (cit. on pp. 21–23).

[Bon+23] Xavier Bonnetain, André Chailloux, André Schrottenloher, and Yixin Shen. “Finding Many Collisions via
Reusable Quantum Walks - Application to Lattice Sieving”. In: Advances in Cryptology - EUROCRYPT 2023
- 42nd Annual International Conference on the Theory and Applications of Cryptographic Techniques, Lyon,
France, April 23-27, 2023, Proceedings, Part V. Ed. by Carmit Hazay and Martijn Stam. Vol. 14008. Lecture
Notes in Computer Science. Springer, 2023, pp. 221–251. doi: 10.1007/978-3-031-30589-4_8. url:
https://doi.org/10.1007/978-3-031-30589-4%5C_8 (cit. on p. 105).

[Bos+17] Joppe Bos, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyubashevsky, John M Schanck, Peter Schwabe,
and Damien Stehlé. CRYSTALS – Kyber: a CCA-secure module-lattice-based KEM. Cryptology ePrint Archive,
Report 2017/634. 2017 (cit. on p. 65).

[Bou+23] Daniel Bourdrez, Dr. Hugo Krawczyk, Kevin Lewi, and Christopher A. Wood. The OPAQUE Asymmetric PAKE
Protocol. Internet-Draft draft-irtf-cfrg-opaque-10. Internet Engineering Task Force, Mar. 2023. 70 pp. url:
https://datatracker.ietf.org/doc/draft-irtf-cfrg-opaque/10/ (cit. on p. 175).

[BMS20] Colin Boyd, Anish Mathuria, and Douglas Stebila. Protocols for Authentication and Key Establishment, Second
Edition. Information Security and Cryptography. Springer, 2020. doi: 10.1007/978-3-662-58146-9
(cit. on p. 156).

[Boy+05] Michel Boyer, Gilles Brassard, Peter Hoyer, and Alain Tappa. “Tight Bounds on Quantum Searching”. In:
vol. 46. Jan. 2005, pp. 187–199. isbn: 9783527603091. doi: 10.1002/3527603093.ch10 (cit. on p. 34).

[Bra83] G. Brassard. “Relativized cryptography”. In: IEEE Transactions on Information Theory 29.6 (1983), pp. 877–
894. doi: 10.1109/TIT.1983.1056754 (cit. on p. 7).

[Bra+02] Gilles Brassard, Peter Høyer, MicheleMosca, and Alain Tapp.Quantum amplitude amplification and estimation.
2002. doi: 10.1090/conm/305/05215. url: http://dx.doi.org/10.1090/conm/305/05215 (cit. on
p. 34).

[BK05] Sergey Bravyi and Alexei Kitaev. “Universal quantum computation with ideal Clifford gates and noisy
ancillas”. In: Phys. Rev. A 71 (2 Feb. 2005), p. 022316. doi: 10.1103/PhysRevA.71.022316 (cit. on pp. 43,
44).

[Brz+11] Christina Brzuska, Marc Fischlin, Bogdan Warinschi, and Stephen C. Williams. “Composability of bellare-
rogaway key exchange protocols”. In: Proceedings of the 18th ACM Conference on Computer and Com-
munications Security, CCS 2011, Chicago, Illinois, USA, October 17-21, 2011. Ed. by Yan Chen, George
Danezis, and Vitaly Shmatikov. ACM, 2011, pp. 51–62. doi: 10.1145/2046707.2046716. url: https:
//doi.org/10.1145/2046707.2046716 (cit. on pp. 143, 148, 156, 157, 160).

[BDH11] Johannes Buchmann, Erik Dahmen, and Andreas Hülsing. “XMSS - A Practical Forward Secure Signature
Scheme based on Minimal Security Assumptions”. In: IACR Cryptol. ePrint Arch. (2011), p. 484. url:
http://eprint.iacr.org/2011/484 (cit. on p. 51).

[CKM19] Earl Campbell, Ankur Khurana, and Ashley Montanaro. “Applying quantum algorithms to constraint
satisfaction problems”. In: Quantum 3 (July 2019), p. 167. doi: 10.22331/q-2019-07-18-167. url:
https://doi.org/10.22331%2Fq-2019-07-18-167 (cit. on p. 112).

[CK02] Ran Canetti and Hugo Krawczyk. “Security Analysis of IKE’s Signature-Based Key-Exchange Protocol”. In:
Advances in Cryptology - CRYPTO 2002, 22nd Annual International Cryptology Conference, Santa Barbara,
California, USA, August 18-22, 2002, Proceedings. Ed. by Moti Yung. Vol. 2442. Lecture Notes in Computer
Science. Springer, 2002, pp. 143–161. doi: 10.1007/3-540-45708-9_10. url: https://doi.org/10.
1007/3-540-45708-9%5C_10 (cit. on pp. 156, 157, 159, 165–168).

[Cel+22] Sofía Celi, Jonathan Hoyland, Douglas Stebila, and Thom Wiggers. “A Tale of Two Models: Formal Verifica-
tion of KEMTLS via Tamarin”. In: Computer Security – ESORICS 2022. Ed. by Vijayalakshmi Atluri, Roberto
Di Pietro, Christian D. Jensen, and Weizhi Meng. Cham: Springer Nature Switzerland, 2022, pp. 63–83.
isbn: 978-3-031-17143-7. doi: 10.1007/978-3-031-17143-7_4 (cit. on pp. 171, 173).

[CL21] André Chailloux and Johanna Loyer. Lattice sieving via quantum random walks. 2021. arXiv: 2105.05608
[quant-ph] (cit. on p. 105).

[CNS17] André Chailloux, María Naya-Plasencia, and André Schrottenloher. “An Efficient Quantum Collision Search
Algorithm and Implications on Symmetric Cryptography”. In: Advances in Cryptology – ASIACRYPT 2017.
Ed. by Tsuyoshi Takagi and Thomas Peyrin. Cham: Springer International Publishing, 2017, pp. 211–240.
isbn: 978-3-319-70697-9 (cit. on pp. 59, 83, 84, 102, 103).

https://doi.org/10.1007/978-3-319-79063-3_5
https://toc.cryptobook.us/
https://toc.cryptobook.us/
https://doi.org/10.1007/978-3-031-30589-4_8
https://doi.org/10.1007/978-3-031-30589-4%5C_8
https://datatracker.ietf.org/doc/draft-irtf-cfrg-opaque/10/
https://doi.org/10.1007/978-3-662-58146-9
https://doi.org/10.1002/3527603093.ch10
https://doi.org/10.1109/TIT.1983.1056754
https://doi.org/10.1090/conm/305/05215
http://dx.doi.org/10.1090/conm/305/05215
https://doi.org/10.1103/PhysRevA.71.022316
https://doi.org/10.1145/2046707.2046716
https://doi.org/10.1145/2046707.2046716
https://doi.org/10.1145/2046707.2046716
http://eprint.iacr.org/2011/484
https://doi.org/10.22331/q-2019-07-18-167
https://doi.org/10.22331%2Fq-2019-07-18-167
https://doi.org/10.1007/3-540-45708-9_10
https://doi.org/10.1007/3-540-45708-9%5C_10
https://doi.org/10.1007/3-540-45708-9%5C_10
https://doi.org/10.1007/978-3-031-17143-7_4
https://arxiv.org/abs/2105.05608
https://arxiv.org/abs/2105.05608

bibliography 197

[Che13] Yuanmi Chen. “Reduction de reseau et securite concrete du chiffrement completement homomorphe”.
PhD thesis. Paris 7, 2013. url: https://archive.org/details/PhDChen13 (cit. on p. 125).

[CN11] Yuanmi Chen and Phong Q. Nguyen. “BKZ 2.0: Better Lattice Security Estimates”. In: Advances in Cryptology -
ASIACRYPT 2011 - 17th International Conference on the Theory and Application of Cryptology and Information
Security, Seoul, South Korea, December 4-8, 2011. Proceedings. Ed. by Dong Hoon Lee and Xiaoyun Wang.
Vol. 7073. Lecture Notes in Computer Science. Springer, 2011, pp. 1–20. doi: 10.1007/978-3-642-
25385-0_1. url: https://doi.org/10.1007/978-3-642-25385-0_1 (cit. on pp. 61, 105).

[Cle+98] R. Cleve, A. Ekert, C. Macchiavello, and M. Mosca. “Quantum algorithms revisited”. In: Proceedings of the
Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences 454.1969 (Jan. 1998),
pp. 339–354. issn: 1471-2946. doi: 10.1098/rspa.1998.0164. url: http://dx.doi.org/10.1098/
rspa.1998.0164 (cit. on p. 35).

[CG20] Jean-Sébastien Coron and Agnese Gini. “Improved cryptanalysis of the AJPS Mersenne based cryptosystem”.
In: Journal of Mathematical Cryptology 14 (July 2020). doi: 10.1515/jmc-2019-0027 (cit. on p. 51).

[Cre11] Cas Cremers. “Key Exchange in IPsec Revisited: Formal Analysis of IKEv1 and IKEv2”. In: Computer
Security - ESORICS 2011 - 16th European Symposium on Research in Computer Security, Leuven, Belgium,
September 12-14, 2011. Proceedings. Ed. by Vijay Atluri and Claudia Díaz. Vol. 6879. Lecture Notes in
Computer Science. Springer, 2011, pp. 315–334. doi: 10 . 1007 / 978 - 3 - 642 - 23822 - 2 \ _18. url:
https://doi.org/10.1007/978-3-642-23822-2%5C_18 (cit. on p. 157).

[Cry19] Crypto Forum Research Group. CFRG PAKE Standardization Process. 2019. url: https://github.com/
cfrg/pake-selection (cit. on p. 140).

[DAn+19a] Jan-Pieter D’Anvers, Qian Guo, Thomas Johansson, Alexander Nilsson, Frederik Vercauteren, and Ingrid
Verbauwhede. “Decryption Failure Attacks on IND-CCA Secure Lattice-Based Schemes”. In: 2019, pp. 565–
598. doi: 10.1007/978-3-030-17259-6_19 (cit. on pp. 65, 81).

[DRV19] Jan-Pieter D’Anvers, Mélissa Rossi, and Fernando Virdia. (One) failure is not an option: Bootstrapping
the search for failures in lattice-based encryption schemes. Cryptology ePrint Archive, Report 2019/1399.
https://eprint.iacr.org/2019/1399. 2019 (cit. on p. 81).

[DRV20] Jan-Pieter D’Anvers, Mélissa Rossi, and Fernando Virdia. “(One) Failure Is Not an Option: Bootstrapping
the Search for Failures in Lattice-Based Encryption Schemes”. In: 2020, pp. 3–33. doi: 10.1007/978-3-
030-45727-3_1 (cit. on p. 65).

[DAn+19b] Jan-Pieter D’Anvers, Marcel Tiepelt, Frederik Vercauteren, and Ingrid Verbauwhede. “Timing Attacks
on Error Correcting Codes in Post-Quantum Schemes”. In: Proceedings of ACM Workshop on Theory of
Implementation Security, TIS at CCS 2019, London, UK, November 11, 2019. Ed. by Begül Bilgin, Svetla
Petkova-Nikova, and Vincent Rijmen. ACM, 2019, pp. 2–9. doi: 10 . 1145 / 3338467 . 3358948. url:
https://doi.org/10.1145/3338467.3358948 (cit. on pp. 15, 51).

[DVV18] Jan-Pieter D’Anvers, Frederik Vercauteren, and Ingrid Verbauwhede. On the impact of decryption failures on
the security of LWE/LWR based schemes. Cryptology ePrint Archive, Report 2018/1089. https://eprint.
iacr.org/2018/1089. 2018 (cit. on p. 65).

[DVV19] Jan-Pieter D’Anvers, Frederik Vercauteren, and Ingrid Verbauwhede. “The Impact of Error Dependencies
on Ring/Mod-LWE/LWR Based Schemes”. In: 2019, pp. 103–115. doi: 10.1007/978-3-030-25510-7_6
(cit. on p. 65).

[DS10] Özgür Dagdelen and Michael Schneider. Parallel Enumeration of Shortest Lattice Vectors. Cryptology ePrint
Archive, Report 2010/097. https://eprint.iacr.org/2010/097. 2010 (cit. on p. 113).

[De 23] Ronald De Wolf. Quantum Computing: Lecture Notes. 2023. url: https://homepages.cwi.nl/~rdewolf/
qcnotes.pdf (cit. on p. 31).

[Det+10] Jérémie Detrey, Guillaume Hanrot, Xavier Pujol, and Damien Stehlé. “Accelerating Lattice Reduction with
FPGAs”. In: 2010, pp. 124–143 (cit. on p. 121).

[DY83] D. Dolev and A. Yao. “On the Security of Public Key Protocols”. In: IEEE Transactions on Information Theory
29.2 (1983), pp. 198–208. doi: 10.1109/TIT.1983.1056650 (cit. on p. 170).

[DM17] Jason A Donenfeld and Kevin Milner. “Formal verification of the WireGuard protocol”. In: Technical Report,
Tech. Rep. (2017). url: https://www.wireguard.com/papers/wireguard-formal-verification.
pdf (cit. on p. 172).

[Dra+06] Thomas G. Draper, Samuel A. Kutin, Eric M. Rains, and Krysta M. Svore. “A Logarithmic-Depth Quantum
Carry-Lookahead Adder”. In: Quantum Info. Comput. 6.4 (July 2006), pp. 351–369. issn: 1533-7146
(cit. on pp. 121, 122).

https://archive.org/details/PhDChen13
https://doi.org/10.1007/978-3-642-25385-0_1
https://doi.org/10.1007/978-3-642-25385-0_1
https://doi.org/10.1007/978-3-642-25385-0_1
https://doi.org/10.1098/rspa.1998.0164
http://dx.doi.org/10.1098/rspa.1998.0164
http://dx.doi.org/10.1098/rspa.1998.0164
https://doi.org/10.1515/jmc-2019-0027
https://doi.org/10.1007/978-3-642-23822-2_18
https://doi.org/10.1007/978-3-642-23822-2%5C_18
https://github.com/cfrg/pake-selection
https://github.com/cfrg/pake-selection
https://doi.org/10.1007/978-3-030-17259-6_19
https://eprint.iacr.org/2019/1399
https://doi.org/10.1007/978-3-030-45727-3_1
https://doi.org/10.1007/978-3-030-45727-3_1
https://doi.org/10.1145/3338467.3358948
https://doi.org/10.1145/3338467.3358948
https://eprint.iacr.org/2018/1089
https://eprint.iacr.org/2018/1089
https://doi.org/10.1007/978-3-030-25510-7_6
https://eprint.iacr.org/2010/097
https://homepages.cwi.nl/~rdewolf/qcnotes.pdf
https://homepages.cwi.nl/~rdewolf/qcnotes.pdf
https://doi.org/10.1109/TIT.1983.1056650
https://www.wireguard.com/papers/wireguard-formal-verification.pdf
https://www.wireguard.com/papers/wireguard-formal-verification.pdf

bibliography 198

[ES21] Edward Eaton and Douglas Stebila. “The ”Quantum Annoying” Property of Password-Authenticated Key
Exchange Protocols”. In: Post-Quantum Cryptography - 12th International Workshop, PQCrypto 2021, Daejeon,
South Korea, July 20-22, 2021, Proceedings. Ed. by Jung Hee Cheon and Jean-Pierre Tillich. Vol. 12841.
Lecture Notes in Computer Science. Springer, 2021, pp. 154–173. doi: 10.1007/978-3-030-81293-5_9.
url: https://doi.org/10.1007/978-3-030-81293-5%5C_9 (cit. on pp. 151–153, 175, 176, 179, 180,
185).

[EUR23] EUROCONTROL. SatCOM. 2023. url: https : / / www . eurocontrol . int / system / satellite -
communications-datalink (cit. on p. 156).

[FP85] Ulrich Fincke and Michael Pohst. “Improved methods for calculating vectors of short length in a lattice,
including a complexity analysis”. In: Mathematics of computation 44.170 (1985), pp. 463–471 (cit. on
pp. 61, 62, 105).

[FDJ13] Austin G. Fowler, Simon J. Devitt, and Cody Jones. “Surface code implementation of block code state
distillation”. In: Scientific Reports 3.1 (June 2013), p. 1939. issn: 2045-2322. doi: 10.1038/srep01939
(cit. on pp. 42, 44, 87, 100, 101).

[Fow+12] Austin G. Fowler, Matteo Mariantoni, John M. Martinis, and Andrew N. Cleland. “Surface codes: Towards
practical large-scale quantum computation”. In: Phys. Rev. A 86 (3 Sept. 2012), p. 032324. doi: 10.1103/
PhysRevA.86.032324 (cit. on p. 41).

[FO99] Eiichiro Fujisaki and Tatsuaki Okamoto. “Secure Integration of Asymmetric and Symmetric Encryption
Schemes”. In: Advances in Cryptology - CRYPTO ’99, 19th Annual International Cryptology Conference, Santa
Barbara, California, USA, August 15-19, 1999, Proceedings. Ed. by Michael J. Wiener. Vol. 1666. Lecture
Notes in Computer Science. Springer, 1999, pp. 537–554. doi: 10.1007/3-540-48405-1_34. url:
https://doi.org/10.1007/3-540-48405-1%5C_34 (cit. on p. 48).

[FO13] Eiichiro Fujisaki and Tatsuaki Okamoto. “Secure Integration of Asymmetric and Symmetric Encryption
Schemes”. In: Journal of Cryptology. 2013. doi: 10.1007/s00145-011-9114-1 (cit. on p. 48).

[GN08a] Nicolas Gama and Phong Q. Nguyen. “Finding short lattice vectors within Mordell’s inequality”. In: 2008,
pp. 207–216. doi: 10.1145/1374376.1374408 (cit. on p. 61).

[GN08b] Nicolas Gama and Phong Q. Nguyen. “Predicting Lattice Reduction”. In: Advances in Cryptology – EUROCRYPT
2008. Ed. by Nigel Smart. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008, pp. 31–51. isbn: 978-3-
540-78967-3 (cit. on p. 50).

[GNR10] Nicolas Gama, Phong Q. Nguyen, and Oded Regev. “Lattice Enumeration Using Extreme Pruning”. In: 2010,
pp. 257–278. doi: 10.1007/978-3-642-13190-5_13 (cit. on pp. 61, 62, 64, 105, 113–115, 118, 119,
127, 132).

[Gaz+21] Stefan-Lukas Gazdag, Sophia Grundner-Culemann, Tobias Guggemos, Tobias Heider, and Daniel Loeben-
berger. “A Formal Analysis of IKEv2’s Post-Quantum Extension”. In: Proceedings of the 37th Annual Computer
Security Applications Conference. ACSAC ’21. New York, NY, USA: Association for Computing Machinery,
2021, pp. 91–105. isbn: 9781450385794. doi: 10.1145/3485832.3485885. url: https://doi.org/
10.1145/3485832.3485885 (cit. on pp. 157, 171, 172).

[GM19] Vlad Gheorghiu and Michele Mosca. Benchmarking the quantum cryptanalysis of symmetric, public-key
and hash-based cryptographic schemes. arXiv:1902.02332. 2019. arXiv: 1902.02332 [quant-ph] (cit. on
p. 149).

[GE21] Craig Gidney andMartin Ekerå. “How to factor 2048 bit RSA integers in 8 hours using 20million noisy qubits”.
In:Quantum 5 (2021), p. 433. doi: 10.22331/q-2021-04-15-433. url: https://doi.org/10.22331/q-
2021-04-15-433 (cit. on pp. 7, 44, 139, 149).

[GLM08] Vittorio Giovannetti, Seth Lloyd, and Lorenzo Maccone. “Quantum Random Access Memory”. In: Phys.
Rev. Lett. 100 (16 Apr. 2008), p. 160501. doi: 10 . 1103 / PhysRevLett . 100 . 160501. url: https :
//link.aps.org/doi/10.1103/PhysRevLett.100.160501 (cit. on pp. 33, 106, 115).

[GJK21] Yanqi Gu, Stanislaw Jarecki, and Hugo Krawczyk. “KHAPE: Asymmetric PAKE from Key-Hiding Key Ex-
change”. In: Advances in Cryptology - CRYPTO 2021 - 41st Annual International Cryptology Conference,
CRYPTO 2021, Virtual Event, August 16-20, 2021, Proceedings, Part IV. Ed. by Tal Malkin and Chris Peikert.
Vol. 12828. Lecture Notes in Computer Science. Springer, 2021, pp. 701–730. doi: 10.1007/978-3-030-
84259-8_24. url: https://doi.org/10.1007/978-3-030-84259-8%5C_24 (cit. on pp. 176–178).

[GJS16] Qian Guo, Thomas Johansson, and Paul Stankovski. A Key Recovery Attack on MDPC with CCA Security Using
Decoding Errors. Cryptology ePrint Archive, Report 2016/858. https://eprint.iacr.org/2016/858.
2016 (cit. on p. 65).

[GJY19] Qian Guo, Thomas Johansson, and Jing Yang. “A Novel CCA Attack Using Decryption Errors Against LAC”.
In: 2019, pp. 82–111. doi: 10.1007/978-3-030-34578-5_4 (cit. on p. 65).

https://doi.org/10.1007/978-3-030-81293-5_9
https://doi.org/10.1007/978-3-030-81293-5%5C_9
https://www.eurocontrol.int/system/satellite-communications-datalink
https://www.eurocontrol.int/system/satellite-communications-datalink
https://doi.org/10.1038/srep01939
https://doi.org/10.1103/PhysRevA.86.032324
https://doi.org/10.1103/PhysRevA.86.032324
https://doi.org/10.1007/3-540-48405-1_34
https://doi.org/10.1007/3-540-48405-1%5C_34
https://doi.org/10.1007/s00145-011-9114-1
https://doi.org/10.1145/1374376.1374408
https://doi.org/10.1007/978-3-642-13190-5_13
https://doi.org/10.1145/3485832.3485885
https://doi.org/10.1145/3485832.3485885
https://doi.org/10.1145/3485832.3485885
https://arxiv.org/abs/1902.02332
https://doi.org/10.22331/q-2021-04-15-433
https://doi.org/10.22331/q-2021-04-15-433
https://doi.org/10.22331/q-2021-04-15-433
https://doi.org/10.1103/PhysRevLett.100.160501
https://link.aps.org/doi/10.1103/PhysRevLett.100.160501
https://link.aps.org/doi/10.1103/PhysRevLett.100.160501
https://doi.org/10.1007/978-3-030-84259-8_24
https://doi.org/10.1007/978-3-030-84259-8_24
https://doi.org/10.1007/978-3-030-84259-8%5C_24
https://eprint.iacr.org/2016/858
https://doi.org/10.1007/978-3-030-34578-5_4

bibliography 199

[Hän+20] Thomas Häner, Samuel Jaques, Michael Naehrig, Martin Roetteler, and Mathias Soeken. “Improved Quantum
Circuits for Elliptic Curve Discrete Logarithms”. In: Post-Quantum Cryptography. Ed. by Jintai Ding and
Jean-Pierre Tillich. Cham: Springer International Publishing, 2020, pp. 425–444. isbn: 978-3-030-44223-1
(cit. on pp. 121, 122).

[HRS17] Thomas Häner, Martin Roetteler, and Krysta M. Svore. “Factoring Using 2n + 2 Qubits with Toffoli Based
Modular Multiplication”. In: 17.7-8 (June 2017), pp. 673–684. issn: 1533-7146 (cit. on p. 121).

[HO22] Feng Hao and Paul C. van Oorschot. “SoK: Password-Authenticated Key Exchange – Theory, Practice,
Standardization and Real-World Lessons”. In: ASIA CCS ’22. Nagasaki, Japan: Association for Computing
Machinery, 2022, pp. 697–711. isbn: 9781450391405. doi: 10.1145/3488932.3523256. url: https:
//doi.org/10.1145/3488932.3523256 (cit. on p. 175).

[Her+10] Jens Hermans, Michael Schneider, Johannes Buchmann, Frederik Vercauteren, and Bart Preneel. “Parallel
Shortest Lattice Vector Enumeration on Graphics Cards”. In: 2010, pp. 52–68 (cit. on pp. 113, 120, 121).

[HYY23] Minki Hhan, Takashi Yamakawa, and Aaram Yun. Quantum Complexity for Discrete Logarithms and Related
Problems. Cryptology ePrint Archive, Paper 2023/1054. https://eprint.iacr.org/2023/1054. 2023.
url: https://eprint.iacr.org/2023/1054 (cit. on p. 177).

[HYY24] Minki Hhan, Takashi Yamakawa, and Aaram Yun. “Quantum Complexity for Discrete Logarithms and
Related Problems”. In: Advances in Cryptology – CRYPTO 2024. Ed. by Leonid Reyzin and Douglas Stebila.
Cham: Springer Nature Switzerland, 2024, pp. 3–36. isbn: 978-3-031-68391-6 (cit. on p. 177).

[HKT10] Thomas Holenstein, Robin Künzler, and Stefano Tessaro. “Equivalence of the Random Oracle Model
and the Ideal Cipher Model, Revisited”. In: Computing Research Repository - CORR (Nov. 2010). doi:
10.1145/1993636.1993650 (cit. on p. 22).

[How+03] Nick Howgrave-Graham, Phong Q. Nguyen, David Pointcheval, John Proos, Joseph H. Silverman, Ari Singer,
and William Whyte. “The Impact of Decryption Failures on the Security of NTRU Encryption”. In: Advances
in Cryptology - CRYPTO 2003. Ed. by Dan Boneh. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003,
pp. 226–246. isbn: 978-3-540-45146-4 (cit. on p. 65).

[Hül+20] Andreas Hülsing, Daniel J. Bernstein, Christoph Dobraunig, Maria Eichlseder, Scott Fluhrer, Stefan-Lukas
Gazdag, Pannos Kampanakis, Stefan Kolbl, Tanja Lange, Martin M Lauridsen, Florian Mendel, Ruben Nieder-
hagen, Christian Rechberger, Joost Rijneveld, Peter Schwabe, Jean-Philippe Aumasson, Bas Westerbaan,
and Ward Beullens. SPHINCS+-Submission to the 3rd round of the NIST post-quantum project. available at
https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-
standardization/post-quantum-cryptography-standardization/round-3-submissions. 2020
(cit. on pp. 11, 29, 52–54, 56, 58, 89, 90, 93–95).

[HRS16] Andreas Hülsing, Joost Rijneveld, and Fang Song. “MitigatingMulti-target Attacks in Hash-Based Signatures”.
In: 2016, pp. 387–416. doi: 10.1007/978-3-662-49384-7_15 (cit. on pp. 23, 52, 58).

[IBM19] IBM. On quantum supremacy. 2019. url: https : / / www . ibm . com / quantum / blog / on - quantum -
supremacy (cit. on p. 6).

[IEC17] IEC. Information technology – Personal identification – ISO-compliant driving licence. ISO/IEC 18013-3:2027.
2017 (cit. on p. 175).

[IEE09] IEEE. IEEE Standard Specification for Password-Based Public-Key Cryptographic Techniques. IEEE Std 1363.2-
2008. 2009. doi: 10.1109/IEEESTD.2009.4773330 (cit. on p. 175).

[Int23] International Civil Aviation organization. CHAPTER 13 L-Band Digital Aeronautical Communications System
(LDACS). Tech. rep. International Civil Aviation organization (ICAO), 2023, pp. 1–15. url: https://www.
ldacs.com/wp-content/uploads/2023/03/WP06.AppA-DCIWG-6-LDACS_SARPs.pdf (cit. on pp. 160,
162).

[Int21] International Civil Aviation Organization (ICAO). ICAO - ANNEX 10 VOL III AMD 91 Aeronautical Telecom-
munications Volume III - Communications Systems (Part I - Digital Data Communication Systems; Part II -
Voice Communication Systems). Mar. 2021 (cit. on pp. 140, 155, 160).

[ISO21] ISO copyright office. ISO/IEC 11779-3. 2021. url: https://www.iso.org/standard/82709.html
(cit. on pp. 155, 156, 160, 172).

[Jaq+20] Samuel Jaques, Michael Naehrig, Martin Roetteler, and Fernando Virdia. “Implementing Grover Oracles for
Quantum Key Search on AES and LowMC”. In: 2020, pp. 280–310. doi: 10.1007/978-3-030-45724-2_10
(cit. on pp. 6, 40, 41, 44, 45, 123, 127, 129, 131, 134, 136).

[JR23] Samuel Jaques and Arthur G. Rattew. QRAM: A Survey and Critique. 2023. arXiv: 2305.10310 [quant-ph]
(cit. on pp. 33, 106, 115).

https://doi.org/10.1145/3488932.3523256
https://doi.org/10.1145/3488932.3523256
https://doi.org/10.1145/3488932.3523256
https://eprint.iacr.org/2023/1054
https://eprint.iacr.org/2023/1054
https://doi.org/10.1145/1993636.1993650
https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization/post-quantum-cryptography-standardization/round-3-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization/post-quantum-cryptography-standardization/round-3-submissions
https://doi.org/10.1007/978-3-662-49384-7_15
https://www.ibm.com/quantum/blog/on-quantum-supremacy
https://www.ibm.com/quantum/blog/on-quantum-supremacy
https://doi.org/10.1109/IEEESTD.2009.4773330
https://www.ldacs.com/wp-content/uploads/2023/03/WP06.AppA-DCIWG-6-LDACS_SARPs.pdf
https://www.ldacs.com/wp-content/uploads/2023/03/WP06.AppA-DCIWG-6-LDACS_SARPs.pdf
https://www.iso.org/standard/82709.html
https://doi.org/10.1007/978-3-030-45724-2_10
https://arxiv.org/abs/2305.10310

bibliography 200

[JS19] Samuel Jaques and John M. Schanck. “Quantum Cryptanalysis in the RAM Model: Claw-Finding Attacks on
SIKE”. In: 2019, pp. 32–61. doi: 10.1007/978-3-030-26948-7_2 (cit. on pp. 40, 126).

[Jaq19] Jaques, Samuel. “Quantum Cost Models for Cryptanalysis of Isogenies”. MA thesis. University of Waterloo,
2019. url: http://hdl.handle.net/10012/14612 (cit. on pp. 42, 43).

[JKX18] Stanislaw Jarecki, Hugo Krawczyk, and Jiayu Xu. “OPAQUE: An Asymmetric PAKE Protocol Secure Against
Pre-computation Attacks”. In: Advances in Cryptology - EUROCRYPT 2018 - 37th Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Tel Aviv, Israel, April 29 - May 3,
2018 Proceedings, Part III. Ed. by Jesper Buus Nielsen and Vincent Rijmen. Vol. 10822. Lecture Notes
in Computer Science. Springer, 2018, pp. 456–486. doi: 10.1007/978-3-319-78372-7_15. url:
https://doi.org/10.1007/978-3-319-78372-7%5C_15 (cit. on p. 176).

[JJ00] Éliane Jaulmes and Antoine Joux. “A Chosen-Ciphertext Attack against NTRU”. In: 2000, pp. 20–35. doi:
10.1007/3-540-44598-6_2 (cit. on p. 65).

[Jon+12] N. Cody Jones, Rodney Van Meter, Austin G. Fowler, Peter L. McMahon, Jungsang Kim, Thaddeus D. Ladd,
and Yoshihisa Yamamoto. “Layered Architecture for Quantum Computing”. In: Phys. Rev. X 2 (3 July 2012),
p. 031007. doi: 10.1103/PhysRevX.2.031007 (cit. on pp. 38, 39, 41–43).

[Jon+10] Nathan Jones, Rodney Van Meter, Austin Fowler, Peter McMahon, Jungsang Kim, Thaddeus Ladd, and
Yoshihisa Yamamoto. “Layered Architecture for Quantum Computing”. In: Physical Review X 2 (Oct. 2010).
doi: 10.1103/PhysRevX.2.031007 (cit. on pp. 40, 41).

[Kan83] Ravi Kannan. “Improved Algorithms for Integer Programming and Related Lattice Problems”. In: 1983,
pp. 193–206. doi: 10.1145/800061.808749 (cit. on pp. 61, 62, 105).

[Kan87] Ravi Kannan. “Minkowski’s Convex Body Theorem and Integer Programming”. In: Math. Oper. Res. 12
(1987), pp. 415–440 (cit. on p. 60).

[Kau+14a] C. Kaufman, P. Hoffman, Y. Nir, P. Eronen, and T. Kivinen. Internet Key Exchange Protocol Version 2. https:
//datatracker.ietf.org/doc/html/rfc7296, accessed Oct 01, 2023. Additional authors: Microsoft,
VPN Consortium, Check Point, Independent, INSIDE SECURE. 2014. doi: 10.17487/RFC7296 (cit. on
pp. 156, 163).

[Kau+14b] C. Kaufman, P. Hoffman, Y. Nir, P. Eronen, and T. Kivinen. Minimal Internet Key Exchange Protocol Version
2. https://www.rfc-editor.org/rfc/rfc7815, accessed Oct 01, 2023. Additional authors: Microsoft,
VPN Consortium, Check Point, Independent, INSIDE SECURE. 2014. doi: 10.17487/RFC7815 (cit. on
p. 163).

[Ken99] Adrian Kent. “Unconditionally Secure Bit Commitment”. In: Physical Review Letters 83.7 (Aug. 1999),
pp. 1447–1450. issn: 1079-7114. doi: 10.1103/physrevlett.83.1447. url: http://dx.doi.org/10.
1103/PhysRevLett.83.1447 (cit. on p. 4).

[Kir+19] Elena Kirshanova, Erik Mårtensson, Eamonn W. Postlethwaite, and Subhayan Roy Moulik. “Quantum
Algorithms for the Approximate k-List Problem and Their Application to Lattice Sieving”. In: 2019, pp. 521–
551. doi: 10.1007/978-3-030-34578-5_19 (cit. on p. 105).

[Koc+22] Daniel Koch, Michael Samodurov, Andrew Projansky, and Paul M Alsing. “Gate-based circuit designs for
quantum adder-inspired quantum random walks on superconducting qubits”. In: International Journal of
Quantum Information 20.03 (2022), p. 2150043 (cit. on p. 121).

[Köl+16] Stefan Kölbl, Martin M. Lauridsen, Florian Mendel, and Christian Rechberger. “Haraka v2 - Efficient Short-
Input Hashing for Post-Quantum Applications”. In: 2016.2 (2016). https://tosc.iacr.org/index.
php/ToSC/article/view/563, pp. 1–29. doi: 10.13154/tosc.v2016.i2.1-29 (cit. on pp. 29, 53, 59).

[Kra03] Hugo Krawczyk. “SIGMA: The ’SIGn-and-MAc’ Approach to Authenticated Diffie-Hellman and Its Use in the
IKE-Protocols”. In: Advances in Cryptology - CRYPTO 2003, 23rd Annual International Cryptology Conference,
Santa Barbara, California, USA, August 17-21, 2003, Proceedings. Ed. by Dan Boneh. Vol. 2729. Lecture
Notes in Computer Science. Springer, 2003, pp. 400–425. doi: 10.1007/978-3-540-45146-4_24. url:
https://doi.org/10.1007/978-3-540-45146-4%5C_24 (cit. on pp. 156, 159).

[Kra05] Hugo Krawczyk. “HMQV: A High-Performance Secure Diffie-Hellman Protocol”. In: Advances in Cryptology -
CRYPTO 2005: 25th Annual International Cryptology Conference, Santa Barbara, California, USA, August
14-18, 2005, Proceedings. Ed. by Victor Shoup. Vol. 3621. Lecture Notes in Computer Science. Springer,
2005, pp. 546–566. doi: 10.1007/11535218_33. url: https://doi.org/10.1007/11535218%5C_33
(cit. on p. 177).

[Kuo+11] Po-Chun Kuo, Michael Schneider, Özgür Dagdelen, Jan Reichelt, Johannes Buchmann, Chen-Mou Cheng,
and Bo-Yin Yang. “Extreme Enumeration on GPU and in Clouds - - How Many Dollars You Need to Break
SVP Challenges -”. In: 2011, pp. 176–191. doi: 10.1007/978-3-642-23951-9_12 (cit. on p. 113).

https://doi.org/10.1007/978-3-030-26948-7_2
http://hdl.handle.net/10012/14612
https://doi.org/10.1007/978-3-319-78372-7_15
https://doi.org/10.1007/978-3-319-78372-7%5C_15
https://doi.org/10.1007/3-540-44598-6_2
https://doi.org/10.1103/PhysRevX.2.031007
https://doi.org/10.1103/PhysRevX.2.031007
https://doi.org/10.1145/800061.808749
https://datatracker.ietf.org/doc/html/rfc7296
https://datatracker.ietf.org/doc/html/rfc7296
https://doi.org/10.17487/RFC7296
https://www.rfc-editor.org/rfc/rfc7815
https://doi.org/10.17487/RFC7815
https://doi.org/10.1103/physrevlett.83.1447
http://dx.doi.org/10.1103/PhysRevLett.83.1447
http://dx.doi.org/10.1103/PhysRevLett.83.1447
https://doi.org/10.1007/978-3-030-34578-5_19
https://tosc.iacr.org/index.php/ToSC/article/view/563
https://tosc.iacr.org/index.php/ToSC/article/view/563
https://doi.org/10.13154/tosc.v2016.i2.1-29
https://doi.org/10.1007/978-3-540-45146-4_24
https://doi.org/10.1007/978-3-540-45146-4%5C_24
https://doi.org/10.1007/11535218_33
https://doi.org/10.1007/11535218%5C_33
https://doi.org/10.1007/978-3-642-23951-9_12

bibliography 201

[Kup11] Greg Kuperberg. Another subexponential-time quantum algorithm for the dihedral hidden subgroup problem.
arXiv preprint arXiv:1112.3333. 2011. arXiv: 1112.3333 [quant-ph] (cit. on pp. 33, 106, 115).

[Laa15] Thijs Laarhoven. “Sieving for Shortest Vectors in Lattices Using Angular Locality-Sensitive Hashing”. In:
2015, pp. 3–22. doi: 10.1007/978-3-662-47989-6_1 (cit. on pp. 61, 105).

[LMv13] Thijs Laarhoven, Michele Mosca, and Joop van de Pol. “Solving the Shortest Vector Problem in Lattices
Faster Using Quantum Search”. In: 2013, pp. 83–101. doi: 10.1007/978-3-642-38616-9_6 (cit. on
pp. 12, 105).

[Lam79] Leslie Lamport. “Constructing Digital Signatures from a One Way Function”. In: 1979 (cit. on p. 51).

[LN20] Jianwei Li and Phong Q. Nguyen. A Complete Analysis of the BKZ Lattice Reduction Algorithm. Cryptology
ePrint Archive, Report 2020/1237. https://eprint.iacr.org/2020/1237. 2020 (cit. on pp. 61, 105).

[LP11] Richard Lindner and Chris Peikert. “Better Key Sizes (and Attacks) for LWE-Based Encryption”. In: 2011,
pp. 319–339. doi: 10.1007/978-3-642-19074-2_21 (cit. on pp. 61, 105).

[LC96] Hoi-Kwong Lo and H. F. Chau. Why quantum bit commitment and ideal quantum coin tossing are impossible.
1996. arXiv: quant-ph/9605026 (cit. on p. 4).

[Low97] G. Lowe. “A Hierarchy of Authentication Specifications”. In: Proceedings 10th Computer Security Foundations
Workshop. Rockport, MA, USA, 1997, pp. 31–43. doi: 10.1109/CSFW.1997.596782 (cit. on p. 171).

[Lyu+22] Vadim Lyubashevsky, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Peter Schwabe, Gregor Seiler, Damien Stehlé,
and Shi Bai. CRYSTALS-DILITHIUM. Tech. rep. available at https://csrc.nist.gov/Projects/post-
quantum-cryptography/selected-algorithms-2022. National Institute of Standards and Technology,
2022 (cit. on pp. 30, 61, 105).

[LM09] Vadim Lyubashevsky and Daniele Micciancio. “On Bounded Distance Decoding, Unique Shortest Vectors,
and the Minimum Distance Problem”. In: 2009, pp. 577–594. doi: 10.1007/978-3-642-03356-8_34
(cit. on p. 60).

[Mäu+21] Nils Mäurer, Thomas Gräupl, Christoph Gentsch, Tobias Guggemos, Marcel Tiepelt, Corinna Schmitt, and
Gabi Dreo Rodosek. “A Secure Cell-Attachment Procedure of LDACS”. In: IEEE European Symposium on
Security and Privacy Workshops, EuroS&P 2021, Vienna, Austria, September 6-10, 2021. IEEE, 2021, pp. 113–
122. doi: 10.1109/EuroSPW54576.2021.00019. url: https://doi.org/10.1109/EuroSPW54576.
2021.00019 (cit. on pp. 16, 157).

[MGS21] Nils Mäurer, Thomas Gräupl, and Corinna Schmitt. Cybersecurity for the L-band Digital Aeronautical Com-
munications System (LDACS). Tech. rep. German Aerospace Center, June 2021, pp. 1–. doi: 10.1049/
SBRA545E_ch4 (cit. on p. 157).

[MG22] Nils Mäurer and Sophia Grundner-Culemann. Formal Verification of the LDACS MAKE Protocol. crypto day
matters 34. Bonn, 2022. doi: 10.18420/cdm-2022-34-24 (cit. on p. 157).

[May97] Dominic Mayers. “Unconditionally Secure Quantum Bit Commitment is Impossible”. In: Physical Review
Letters 78.17 (Apr. 1997), pp. 3414–3417. issn: 1079-7114. doi: 10.1103/physrevlett.78.3414. url:
http://dx.doi.org/10.1103/PhysRevLett.78.3414 (cit. on p. 4).

[Mei+13] S. Meier, B. Schmidt, C. Cremers, and D. Basin. “The TAMARIN Prover For The Symbolic Analysis Of Security
Protocols”. In: 25th International Conference on Computer Aided Verification (CAV). Saint Petersburg, Russia,
2013, pp. 696–701. doi: 10.1007/978-3-642-39799-8_48 (cit. on p. 170).

[Mel+19] Carlos Aguilar Melchor, Nicolas Aragon, Magali Bardet, Slim Bettaieb, Loic Bidoux, Olivier Blazy, Jean-
Christophe Deneuville, Philippe Gaborit, Adrien Hauteville, Ayoub Otmani, Olivier Ruatta, Jean-Piere Tillich,
and Gilles Zemor. ROLLO-Rank-Ouroboros, LAKE & LOCKER. Technical report, National Institute of Standards
and Technology. available at https://csrc.nist.gov/Projects/post-quantum-cryptography/post-
quantum-cryptography-standardization/round-2-submissions. 2019 (cit. on p. 65).

[Mel+18] Carlos Aguilar Melchor, Nicolas Aragon, Slim Bettaieb, Loïc Bidoux, Olivier Blazy, Jean-Christophe Deneuville,
Philippe Gaborit, Edoardo Persichetti, and GillesZémor. Hamming Quasi-Cyclic (HQC). Technical report,
National Institute of Standards and Technology. available at https://csrc.nist.gov/Projects/post-
quantum-cryptography/post-quantum-cryptography-standardization/round-2-submissions.
2018 (cit. on p. 65).

[MW15] Daniele Micciancio and Michael Walter. “Fast Lattice Point Enumeration with Minimal Overhead”. In: 2015,
pp. 276–294. doi: 10.1137/1.9781611973730.21 (cit. on p. 62).

[MW16] Daniele Micciancio and Michael Walter. “Practical, Predictable Lattice Basis Reduction”. In: 2016, pp. 820–
849. doi: 10.1007/978-3-662-49890-3_31 (cit. on p. 61).

[Mic20] Microsoft. Q# Language Specification. 2020. url: https://github.com/microsoft/qsharp-language/
tree/main/Specifications/Language#q-language (cit. on p. 40).

https://arxiv.org/abs/1112.3333
https://doi.org/10.1007/978-3-662-47989-6_1
https://doi.org/10.1007/978-3-642-38616-9_6
https://eprint.iacr.org/2020/1237
https://doi.org/10.1007/978-3-642-19074-2_21
https://arxiv.org/abs/quant-ph/9605026
https://doi.org/10.1109/CSFW.1997.596782
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://doi.org/10.1007/978-3-642-03356-8_34
https://doi.org/10.1109/EuroSPW54576.2021.00019
https://doi.org/10.1109/EuroSPW54576.2021.00019
https://doi.org/10.1109/EuroSPW54576.2021.00019
https://doi.org/10.1049/SBRA545E_ch4
https://doi.org/10.1049/SBRA545E_ch4
https://doi.org/10.18420/cdm-2022-34-24
https://doi.org/10.1103/physrevlett.78.3414
http://dx.doi.org/10.1103/PhysRevLett.78.3414
https://doi.org/10.1007/978-3-642-39799-8_48
https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-2-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-2-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-2-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-2-submissions
https://doi.org/10.1137/1.9781611973730.21
https://doi.org/10.1007/978-3-662-49890-3_31
https://github.com/microsoft/qsharp-language/tree/main/Specifications/Language#q-language
https://github.com/microsoft/qsharp-language/tree/main/Specifications/Language#q-language

bibliography 202

[Mon18] Ashley Montanaro. “Quantum-Walk Speedup of Backtracking Algorithms”. In: Theory Comput. 14.1 (2018),
pp. 1–24. doi: 10.4086/toc.2018.v014a015. url: https://doi.org/10.4086/toc.2018.v014a015
(cit. on pp. 12, 35–37, 105, 107–112, 120, 121).

[MT19] Edgard Munoz-Coreas and Himanshu Thapliyal. “Quantum Circuit Design of a T-count Optimized Integer
Multiplier”. In: IEEE Transactions on Computers 68.5 (2019), pp. 729–739. doi: 10.1109/TC.2018.2882774
(cit. on p. 121).

[Nae+17] Michael Naehrig, Erdem Alkim, Joppe Bos, Leo Ducas, Karen Easterbrook, Brian LaMacchia, Patrick Longa,
Ilya Mironov, Valeria Nikolaenko, Christopher Peikert, Ananth Raghunathan, and Douglas Stebila. FrodoKEM.
Technical report, National Institute of Standards and Technology. available at https://csrc.nist.gov/
Projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-
1-submissions. 2017 (cit. on p. 65).

[Nat15] National Institute for Standards and Technology. Secure Hash Standard. FIPS 180-4. 2015. url: https:
//csrc.nist.gov/pubs/fips/180-4/upd1/final (cit. on p. 161).

[Nat17] National Institute for Standards and Technology. Post-Quantum Cryptography Call for Proposals. 2017. url:
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-
for-proposals-final-dec-2016.pdf (cit. on pp. 7, 9, 27, 40, 44, 78, 106, 124, 139).

[Nat20] National Institute for Standards and Technology. Post-Quantum Cryptography Round 1. 2020. url: https:
/ / csrc . nist . gov / Projects / post - quantum - cryptography / post - quantum - cryptography -
standardization/round-1-submissions (cit. on pp. 52, 65, 66).

[Nat22] National Institute for Standards and Technology. NIST: Selected Algorithms 2022. 2022. url: https:
//csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022 (cit. on
pp. 11, 12, 83, 155, 157, 175).

[Nat24a] National Institute for Standards and Technology. FIPS 203. 2024. url: https://csrc.nist.gov/pubs/
fips/203/ipd (cit. on p. 12).

[Nat24b] National Institute for Standards and Technology. FIPS 204. 2024. url: https://csrc.nist.gov/pubs/
fips/204/final (cit. on p. 12).

[Nat24c] National Institute for Standards and Technology. FIPS 205. 2024. url: https://csrc.nist.gov/pubs/
fips/205/ipd (cit. on p. 11).

[NS78] Roger M. Needham and Michael D. Schroeder. “Using Encryption for Authentication in Large Networks of
Computers”. In: Commun. ACM 21.12 (Dec. 1978), pp. 993–999. issn: 0001-0782. doi: 10.1145/359657.
359659. url: https://doi.org/10.1145/359657.359659 (cit. on p. 170).

[NV08] Phong Q. Nguyen and Thomas Vidick. “Sieve algorithms for the shortest vector problem are practical”. In:
J. Math. Cryptol. 2.2 (2008), pp. 181–207. doi: 10.1515/JMC.2008.009. url: https://doi.org/10.
1515/JMC.2008.009 (cit. on pp. 61, 105).

[Nie+23] Junhong Nie, Qinlin Zhu, Meng Li, and Xiaoming Sun. “Quantum circuit design for integer multiplication
based on Schönhage-Strassen algorithm”. In: IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems (2023), pp. 1–1. doi: 10.1109/TCAD.2023.3279300 (cit. on pp. 121, 122).

[NC11] Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum Information: 10th Anniversary
Edition. Cambridge University Press, 2011. isbn: 9781107002173 (cit. on p. 31).

[NIS15] NIST. SHA-3 standard: Permutation-based hash and extendable-output functions. National Institute for
Standards and Technology. 2015. doi: 10.6028/NIST.FIPS.202 (cit. on pp. 53, 58).

[PF14] Monica Paolini and Senza Fili. Enabling the Next Generation in Air Traffic Management with AeroMACS.
https://files.wimaxforum.org/Document/Download/AeroMACS-Delivering_Next_Generation_
Communications_to_the_Airport_Surface. 2014 (cit. on p. 156).

[PV23] Edward Parker and Michael J. D. Vermeer. Estimating the Energy Requirements to Operate a Cryptanalytically
Relevant Quantum Computer. arXiv:2304.14344. 2023. arXiv: 2304.14344 [quant-ph] (cit. on p. 149).

[Pei14] Chris Peikert. “Lattice Cryptography for the Internet”. In: Post-Quantum Cryptography - 6th International
Workshop, PQCrypto 2014, Waterloo, ON, Canada, October 1-3, 2014. Proceedings. Ed. by Michele Mosca.
Vol. 8772. Lecture Notes in Computer Science. Springer, 2014, pp. 197–219. doi: 10.1007/978-3-319-
11659-4_12. url: https://doi.org/10.1007/978-3-319-11659-4%5C_12 (cit. on pp. 157, 159, 162,
165).

[Pei16] Chris Peikert. “A Decade of Lattice Cryptography”. In: Found. Trends Theor. Comput. Sci. 10.4 (2016),
pp. 283–424. doi: 10.1561/0400000074. url: https://doi.org/10.1561/0400000074 (cit. on pp. 59,
166).

https://doi.org/10.4086/toc.2018.v014a015
https://doi.org/10.4086/toc.2018.v014a015
https://doi.org/10.1109/TC.2018.2882774
https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-1-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-1-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-1-submissions
https://csrc.nist.gov/pubs/fips/180-4/upd1/final
https://csrc.nist.gov/pubs/fips/180-4/upd1/final
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-1-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-1-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-1-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/pubs/fips/203/ipd
https://csrc.nist.gov/pubs/fips/203/ipd
https://csrc.nist.gov/pubs/fips/204/final
https://csrc.nist.gov/pubs/fips/204/final
https://csrc.nist.gov/pubs/fips/205/ipd
https://csrc.nist.gov/pubs/fips/205/ipd
https://doi.org/10.1145/359657.359659
https://doi.org/10.1145/359657.359659
https://doi.org/10.1145/359657.359659
https://doi.org/10.1515/JMC.2008.009
https://doi.org/10.1515/JMC.2008.009
https://doi.org/10.1515/JMC.2008.009
https://doi.org/10.1109/TCAD.2023.3279300
https://doi.org/10.6028/NIST.FIPS.202
https://files.wimaxforum.org/Document/Download/AeroMACS-Delivering_Next_Generation_Communications_to_the_Airport_Surface
https://files.wimaxforum.org/Document/Download/AeroMACS-Delivering_Next_Generation_Communications_to_the_Airport_Surface
https://arxiv.org/abs/2304.14344
https://doi.org/10.1007/978-3-319-11659-4_12
https://doi.org/10.1007/978-3-319-11659-4_12
https://doi.org/10.1007/978-3-319-11659-4%5C_12
https://doi.org/10.1561/0400000074
https://doi.org/10.1561/0400000074

bibliography 203

[PS13] Paul Pham and KrystaM Svore. “A 2D nearest-neighbor quantum architecture for factoring in polylogarithmic
depth.” In: Quantum Inf. Comput. 13.11-12 (2013), pp. 937–962 (cit. on p. 121).

[Poh81] Michael Pohst. “On the Computation of Lattice Vectors of Minimal Length, Successive Minima and Reduced
Bases with Applications”. In: SIGSAM Bull. 15.1 (Feb. 1981), pp. 37–44. issn: 0163-5824. doi: 10.1145/
1089242.1089247. url: https://doi.org/10.1145/1089242.1089247 (cit. on p. 62).

[Pre18] John Preskill. “Quantum Computing in the NISQ era and beyond”. In: Quantum 2 (Aug. 2018), p. 79. issn:
2521-327X. doi: 10.22331/q-2018-08-06-79. url: https://doi.org/10.22331/q-2018-08-06-79
(cit. on pp. 64, 106).

[Pre+22] Thomas Prest, Pierre-Alain Fouque, Jeffrey Hoffstein, Paul Kirchner, Vadim Lyubashevsky, Thomas Pornin,
Thomas Ricosset, Gregor Seiler, William Whyte, and Zhenfei Zhang. FALCON. Tech. rep. available at
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022.
National Institute of Standards and Technology, 2022 (cit. on pp. 30, 61, 105).

[PS08] Xavier Pujol and Damien Stehlé. “Rigorous and Efficient Short Lattice Vectors Enumeration”. In: 2008,
pp. 390–405. doi: 10.1007/978-3-540-89255-7_24 (cit. on p. 121).

[Reg05] Oded Regev. “On lattices, learning with errors, random linear codes, and cryptography”. In: Proceedings of
the 37th Annual ACM Symposium on Theory of Computing, Baltimore, MD, USA, May 22-24, 2005. Ed. by
Harold N. Gabow and Ronald Fagin. ACM, 2005, pp. 84–93. doi: 10.1145/1060590.1060603. url:
https://doi.org/10.1145/1060590.1060603 (cit. on p. 105).

[Reg09] Oded Regev. “On lattices, learning with errors, random linear codes, and cryptography”. In: J. ACM 56.6
(2009), 34:1–34:40. doi: 10.1145/1568318.1568324. url: https://doi.org/10.1145/1568318.
1568324 (cit. on p. 105).

[Flu+20] S. Fluhrer, P. Kampanakis, D. McGrew, and V. Smyslov. Mixing Preshared Keys in the Internet Key Exchange
Protocol Version 2 (IKEv2) for Post-quantum Security. RFC 8784 (Proposed Standard). RFC. Fremont, CA,
USA: RFC Editor, June 2020. doi: 10.17487/RFC8784. url: https://www.rfc-editor.org/rfc/
rfc8784.txt (cit. on p. 157).

[Roe+17] Martin Roetteler, Michael Naehrig, Krysta M. Svore, and Kristin Lauter. “Quantum Resource Estimates
for Computing Elliptic Curve Discrete Logarithms”. In: Advances in Cryptology – ASIACRYPT 2017. Ed. by
Tsuyoshi Takagi and Thomas Peyrin. Cham: Springer International Publishing, 2017, pp. 241–270. isbn:
978-3-319-70697-9 (cit. on pp. 42, 43, 149).

[RG17] Lidia Ruiz-Perez and Juan Carlos Garcia-Escartin. “Quantum arithmetic with the quantum Fourier transform”.
In: Quantum Information Processing 16 (2017), pp. 1–14 (cit. on p. 121).

[SFW19] Cyprien Delpech de Saint Guilhem, Marc Fischlin, and Bogdan Warinschi. Authentication in Key-Exchange:
Definitions, Relations and Composition. Cryptology ePrint Archive, Paper 2019/1203. https://eprint.
iacr.org/2019/1203. 2019. doi: 10.1109/CSF49147.2020.00028. url: https://eprint.iacr.org/
2019/1203 (cit. on pp. 143–148, 157–159, 169, 170).

[SFW20] Cyprien Delpech de Saint Guilhem, Marc Fischlin, and Bogdan Warinschi. “Authentication in Key-Exchange:
Definitions, Relations and Composition”. In: 33rd IEEE Computer Security Foundations Symposium, CSF 2020,
Boston, MA, USA, June 22-26, 2020. IEEE, 2020, pp. 288–303. doi: 10.1109/CSF49147.2020.00028.
url: https://doi.org/10.1109/CSF49147.2020.00028 (cit. on pp. 143, 160).

[Sch+17] John M. Schanck, Andreas Hulsing, Joost Rijneveld, and Peter Schwabe. NTRU-HRSS-KEM. Tech. rep.
available at https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-
cryptography-standardization/round-1-submissions. National Institute of Standards and Technol-
ogy, 2017 (cit. on p. 105).

[Sch17] Joern-Marc Schmidt. Requirements for Password-Authenticated Key Agreement (PAKE) Schemes. RFC 8125.
Apr. 2017. doi: 10.17487/RFC8125. url: https://www.rfc-editor.org/info/rfc8125 (cit. on
p. 175).

[SB17] Markus Schmidt and Nina Bindel. Estimation of the Hardness of the Learning with Errors Problem with a
Restricted Number of Samples. Cryptology ePrint Archive, Report 2017/140. https://eprint.iacr.org/
2017/140. 2017 (cit. on p. 60).

[SE94] Claus Schnorr and M. Euchner. “Lattice Basis Reduction: Improved Practical Algorithms and Solving Subset
Sum Problems”. In: Mathematical Programming 66 (Aug. 1994), pp. 181–199. doi: 10.1007/BF01581144
(cit. on pp. 61, 62, 105, 113).

[Sch20] Mark Schultz-Wu. Meaning of ”Security can be reduced to a problem”. 2020. url: %5Curl % 7Bhttps :
//crypto.stackexchange.com/questions/80981/meaning-of-security-can-be-reduced-to-a-
problem%7D (cit. on p. 19).

https://doi.org/10.1145/1089242.1089247
https://doi.org/10.1145/1089242.1089247
https://doi.org/10.1145/1089242.1089247
https://doi.org/10.22331/q-2018-08-06-79
https://doi.org/10.22331/q-2018-08-06-79
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://doi.org/10.1007/978-3-540-89255-7_24
https://doi.org/10.1145/1060590.1060603
https://doi.org/10.1145/1060590.1060603
https://doi.org/10.1145/1568318.1568324
https://doi.org/10.1145/1568318.1568324
https://doi.org/10.1145/1568318.1568324
https://doi.org/10.17487/RFC8784
https://www.rfc-editor.org/rfc/rfc8784.txt
https://www.rfc-editor.org/rfc/rfc8784.txt
https://eprint.iacr.org/2019/1203
https://eprint.iacr.org/2019/1203
https://doi.org/10.1109/CSF49147.2020.00028
https://eprint.iacr.org/2019/1203
https://eprint.iacr.org/2019/1203
https://doi.org/10.1109/CSF49147.2020.00028
https://doi.org/10.1109/CSF49147.2020.00028
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-1-submissions
https://doi.org/10.17487/RFC8125
https://www.rfc-editor.org/info/rfc8125
https://eprint.iacr.org/2017/140
https://eprint.iacr.org/2017/140
https://doi.org/10.1007/BF01581144
%5Curl%7Bhttps://crypto.stackexchange.com/questions/80981/meaning-of-security-can-be-reduced-to-a-problem%7D
%5Curl%7Bhttps://crypto.stackexchange.com/questions/80981/meaning-of-security-can-be-reduced-to-a-problem%7D
%5Curl%7Bhttps://crypto.stackexchange.com/questions/80981/meaning-of-security-can-be-reduced-to-a-problem%7D

bibliography 204

[Sch+22] Peter Schwabe, Roberto Avanzi, Joppe Bos, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyubashevsky,
John M. Schanck, Gregor Seiler, Damien Stehlé, and Jintai Ding. CRYSTALS-KYBER. Tech. rep. available
at https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022.
National Institute of Standards and Technology, 2022 (cit. on pp. 30, 61, 105, 113, 124, 125).

[SES23] SESAR JU. LDACS A/G Specification, Edition 01.01.00, Template Edition 02.00.05, Edition date 25.04.2023.
Tech. rep. Version PJ.14-W2-60 TRL6 Final LDACS A/G Specification. Earlier version can be found here
https://www.ldacs.com/wp-content/uploads/2023/03/SESAR2020_PJ14-W2-60_TRL6_D3_1_
230_3rd_LDACS_AG_Specification_v1.0.0.pdf. SESAR JU, 2023. url: https://www.ldacs.com/
publications-and-links/#post-Specifications (cit. on pp. 13, 16, 155–157, 159, 160, 162).

[Sho94] P.W. Shor. “Algorithms for quantum computation: discrete logarithms and factoring”. In: Proceedings 35th
Annual Symposium on Foundations of Computer Science. 1994, pp. 124–134. doi: 10.1109/SFCS.1994.
365700 (cit. on p. 7).

[Sin23] Single European Sky ATM Research Joint Undertaking. Single European Sky ATM Research. [Online; accessed
29 December 2023]. 2023. url: https://www.sesarju.eu/ (cit. on p. 155).

[Sze04] Mario Szegedy. “Quantum Speed-Up of Markov Chain Based Algorithms”. In: 2004, pp. 32–41. doi:
10.1109/FOCS.2004.53 (cit. on p. 35).

[Sze17] Alan Szepieniec. Ramstake. Tech. rep. available at https://csrc.nist.gov/projects/post-quantum-
cryptography/post-quantum-cryptography-standardization/round-1-submissions. National
Institute of Standards and Technology, 2017 (cit. on pp. 10, 11, 28, 47–49, 65–68).

[TW22] Tim Taubert and Christopher A. Wood. SPAKE2+, an Augmented PAKE. Internet-Draft draft-bar-cfrg-
spake2plus-08. Work in Progress. Internet Engineering Task Force, May 2022. 30 pp. url: https://
datatracker.ietf.org/doc/draft-bar-cfrg-spake2plus/08/ (cit. on p. 175).

[tea23] The FPLLL development team. “fplll, a lattice reduction library, Version: 5.4.2”. Available at https://
github.com/fplll/fplll. 2023. url: https://github.com/fplll/fplll (cit. on pp. 121–123).

[The23] The Tamarin Team. Tamarin-Prover Manual. [Online; accessed 29 December 2023]. 2023. url: https:
//tamarin-prover.com/manual/master/tex/tamarin-manual.pdf (cit. on p. 171).

[Tho19] Steve Thomas. ”Re: [Cfrg] Proposed PAKE Selection Process”. CFRG Mailing List. June 2019. url: https:
//mailarchive.ietf.org/arch/msg/cfrg/dtf91cmavpzT47U3AVxrVGNB5UM/# (cit. on p. 140).

[TD20a] Marcel Tiepelt and Jan-Pieter D’Anvers. “Exploiting Decryption Failures in Mersenne Number Cryptosystems”.
In: Proceedings of the 7th on ASIA Public-Key Cryptography Workshop, APKC at AsiaCCS 2020, Taipei, Taiwan,
October 6, 2020. Ed. by Keita Emura and Naoto Yanai. ACM, 2020, pp. 45–54. doi: 10.1145/3384940.
3388957. url: https://doi.org/10.1145/3384940.3388957 (cit. on pp. 11, 17, 28, 31, 47, 65).

[TD20b] Marcel Tiepelt and Jan-Pieter D’Anvers. Exploiting Decryption Failures in Mersenne Number Cryptosystems.
Cryptology ePrint Archive, Paper 2020/367. https://eprint.iacr.org/2020/367. 2020. doi: 10.
1145/3384940.3388957. url: https://eprint.iacr.org/2020/367 (cit. on pp. 11, 17, 31, 47, 65).

[TES23a] Marcel Tiepelt, Edward Eaton, and Douglas Stebila. Making an Asymmetric PAKE Quantum-Annoying by
Hiding Group Elements. Cryptology ePrint Archive, Paper 2023/1513. https://eprint.iacr.org/2023/
1513. 2023. doi: 10.1007/978-3-031-50594-2_9. url: https://eprint.iacr.org/2023/1513
(cit. on pp. 15, 17, 143, 175).

[TES23b] Marcel Tiepelt, Edward Eaton, and Douglas Stebila. “Making an Asymmetric PAKE Quantum-Annoying by
Hiding Group Elements”. In: Computer Security - ESORICS 2023 - 28th European Symposium on Research in
Computer Security, The Hague, The Netherlands, September 25-29, 2023, Proceedings, Part I. Ed. by Gene
Tsudik, Mauro Conti, Kaitai Liang, and Georgios Smaragdakis. Vol. 14344. Lecture Notes in Computer
Science. Springer, 2023, pp. 168–188. doi: 10.1007/978-3-031-50594-2_9. url: https://doi.org/
10.1007/978-3-031-50594-2_9 (cit. on pp. 15, 17, 141, 143, 175).

[TMM24a] Marcel Tiepelt, Christian Martin, and Nils Maeurer. Post-Quantum Ready Key Agreement for Aviation.
Cryptology ePrint Archive, Paper 2024/1096. https://eprint.iacr.org/2024/1096. 2024. doi:
10.62056/aebn2isfg. url: https://eprint.iacr.org/2024/1096 (cit. on pp. 14, 17, 143, 155, 166,
167).

[TMM24b] Marcel Tiepelt, Christian Martin, and Nils Mäurer. “Post-Quantum Ready Key Agreement for Aviation”. In:
IACR Communications in Cryptology 1.1 (Apr. 9, 2024). issn: 3006-5496. doi: 10.62056/aebn2isfg. url:
https://doi.org/10.62056/aebn2isfg (cit. on pp. 14, 17, 140, 143, 155).

[TS19] Marcel Tiepelt and Alan Szepieniec. “Quantum LLL with an Application to Mersenne Number Cryptosystems”.
In: Progress in Cryptology – LATINCRYPT 2019. Ed. by Peter Schwabe and Nicolas Thériault. Cham: Springer
International Publishing, 2019, pp. 3–23. isbn: 978-3-030-30530-7. doi: 10.1007/978-3-030-30530-7_1.
url: https://doi.org/10.1007/978-3-030-30530-7_1 (cit. on pp. 16, 51, 61, 78).

https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://www.ldacs.com/wp-content/uploads/2023/03/SESAR2020_PJ14-W2-60_TRL6_D3_1_230_3rd_LDACS_AG_Specification_v1.0.0.pdf
https://www.ldacs.com/wp-content/uploads/2023/03/SESAR2020_PJ14-W2-60_TRL6_D3_1_230_3rd_LDACS_AG_Specification_v1.0.0.pdf
https://www.ldacs.com/publications-and-links/#post-Specifications
https://www.ldacs.com/publications-and-links/#post-Specifications
https://doi.org/10.1109/SFCS.1994.365700
https://doi.org/10.1109/SFCS.1994.365700
https://www.sesarju.eu/
https://doi.org/10.1109/FOCS.2004.53
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-1-submissions
https://datatracker.ietf.org/doc/draft-bar-cfrg-spake2plus/08/
https://datatracker.ietf.org/doc/draft-bar-cfrg-spake2plus/08/
https://github.com/fplll/fplll
https://github.com/fplll/fplll
https://github.com/fplll/fplll
https://tamarin-prover.com/manual/master/tex/tamarin-manual.pdf
https://tamarin-prover.com/manual/master/tex/tamarin-manual.pdf
https://mailarchive.ietf.org/arch/msg/cfrg/dtf91cmavpzT47U3AVxrVGNB5UM/#
https://mailarchive.ietf.org/arch/msg/cfrg/dtf91cmavpzT47U3AVxrVGNB5UM/#
https://doi.org/10.1145/3384940.3388957
https://doi.org/10.1145/3384940.3388957
https://doi.org/10.1145/3384940.3388957
https://eprint.iacr.org/2020/367
https://doi.org/10.1145/3384940.3388957
https://doi.org/10.1145/3384940.3388957
https://eprint.iacr.org/2020/367
https://eprint.iacr.org/2023/1513
https://eprint.iacr.org/2023/1513
https://doi.org/10.1007/978-3-031-50594-2_9
https://eprint.iacr.org/2023/1513
https://doi.org/10.1007/978-3-031-50594-2_9
https://doi.org/10.1007/978-3-031-50594-2_9
https://doi.org/10.1007/978-3-031-50594-2_9
https://eprint.iacr.org/2024/1096
https://doi.org/10.62056/aebn2isfg
https://eprint.iacr.org/2024/1096
https://doi.org/10.62056/aebn2isfg
https://doi.org/10.62056/aebn2isfg
https://doi.org/10.1007/978-3-030-30530-7_1
https://doi.org/10.1007/978-3-030-30530-7_1

bibliography 205

[WVW92] Diffie Whitfield, Paul C. Van Oorshot, and Michael J. Wiener. “Authentication and authenticated key
exchanges”. In: Designs, Codes and Cryptography (1992). doi: 10.1007/BF00124891 (cit. on p. 156).

[Zal99] Christof Zalka. “Grover’s quantum searching algorithm is optimal”. In: Physical Review A 60.4 (1999),
p. 2746 (cit. on p. 44).

https://doi.org/10.1007/BF00124891

Acronyms

AES Advanced Encryption Standard. 28, 44, 53
aPAKE asymmetric Password Authenticated Key Exchange. 176, 178, 179, 187

BDD Bounded Distance Decoding. 60, 61
BQP Bounded Error Quantum Polynomial Time. 7
BSI German Federal Office for Information Security. 7

CDH Computational Diffie–Hellman. 21

DDH Decisional Diffie–Hellman. 21, 140, 141, 165
DFS depth-first search. 34, 37
DH Diffie–Hellman. 139, 155–157, 159, 163
DLOG Discrete Logarithm. 139, 140

ECC Error Correcting Code. 48
EUF-CMA Existential Unforgeability under Chosen Message Attack. 21, 22, 157, 158, 162, 164, 191

FORS Forest of Random Subsets. 11, 29, 52, 54, 56, 58, 89, 91

HW Hamming weight. 47

IC Ideal Cipher. 22
IKEv2 Internet Key Exchange Version 2. 156, 157, 163
IND-CCA Indistinguishability under Chosen Ciphertext Attack. 10, 15, 20, 21, 28, 48, 65, 135
IND-CPA Indistinguishability under Chosen Plaintext Attack. 20, 21, 157, 158, 162, 165, 191

KEM Key Encapsulation Mechanism. 9, 20, 21, 27, 28, 30, 44, 47, 48, 67, 68, 71, 106, 124, 139,
140, 155, 157–160, 162, 165, 191

KH-AKE Key-Hiding Authenticated Key Exchange. 176, 177

LDACS L-band Digital Aeronautic Communication System. 139, 140, 191
LHC Mersenne Low Hamming Combination. 47–49
LLL Lenstra-Lenstra-Lovász. 16, 49, 61
LWE Learning with Errors. 60, 105

MAC Message Authentication Code. 156, 158, 162, 163

NIST National Institute for Standards and Technology. 7, 9, 15, 27–30, 37, 40, 44, 47, 51, 58, 65,
83, 106, 124, 135, 139, 156, 157

207

acronyms 208

OTS One-Time-Signature. 51
OWF One-Way Function. 23

PAKE Password Authenticated Key Exchange. 14, 140, 141, 149, 175–179
PPT Probabilistic Polynomial Time. 20, 21
PRF Pseudo Random Function. 22, 163

QAA Quantum Amplitude Amplification. 29, 33, 83, 90, 92, 94, 96, 97
QPE Quantum Phase Estimation. 34–36, 108–111
QRACM Quantum Accessible Random Access Memory. 30, 33, 106, 115

SHA Secure Hash Algorithm. 28, 44, 53
SIGMA SIGn-and-MAc. 156, 157, 159, 162
SVP Shortest Vector Problem. 59–62, 105

UUF Universal Unforgability. 22

WOTS Winternitz One Time Signature. 11, 29, 52, 53, 56, 89, 93, 96

XMSS eXtended Merle Signature Scheme. 11, 29, 51, 52, 55, 56, 89, 93, 95

List of Figures

1.1 Enc- and decryption with plaintext M and ciphertext c. 5
1.2 BPQ, post- and pre-quantum cryptography in complexity theory. 7
1.3 Quantifying security in cryptography. 9

2.1 Candidates in the NIST post-quantum competition. 27

3.1 Generic quantum circuit. 32
3.2 Copy-uncompute circuit . 32
3.3 Quantum circuit for Grover’s algorithm. 33
3.4 Quantum Phase Estimation . 35
3.5 Detect Marked Vertex . 36
3.6 Find Marked Vertex . 36
3.7 FindMV and DetectMV for quantum backtracking. 36
3.8 Layers of a quantum computing architecture . 39
3.9 GCost and T-Depth in a quantum circuit. 41
3.10 Fault-tolerant quantum computing layer . 42

4.1 Mersenne key generation . 48
4.2 Mersenne encryption and decryption . 48
4.3 Partitioning of binary string in Slice-and-Dice. 50
4.4 Slice-and-Dice . 50
4.5 Winternitz One Time Signature . 54
4.6 Forest of random subsets signature. 55
4.7 eXtended Merkle Signature Scheme . 56
4.8 SPHINCS+ hypertree with XMSS, WOTS+ and FORS signatures. 57
4.9 Hardness of γ-Gap SVP . 60
4.10 Simplified lattice enumeration as backtracking tree . 62

5.1 Ramstake encode and decode algorithms. 68
5.2 Mersenne-estimator output from decryption failures . 72
5.3 Extraction of partition for Slice-and-Dice. 73
5.4 Extract intervals in attack on Ramstake. 74
5.5 Merging bit intervals in Mersenne-attack . 75
5.6 Partitioning example for reduced Slice-and-Dice attack. 76
5.7 Partitioning for Slice-And-Dice . 76
5.8 Reduced Slice-And0Dice . 76
5.9 Number of correct positions of parts of reduced Slice-and-Dice attack. 78
5.10 Experimental distribution of correct position . 80
5.11 Expected number of quantum steps in Mersenne-attack . 81

6.1 Attack procedure for a preimage attack on SPHINCS+. 89
6.2 Universal Forgery from message digest . 90
6.3 Universal Forgery from FORS forgery . 92
6.4 Universal Forgery from FORS forgery . 93

209

list of figures 210

6.5 Universal Forgery from WOTS+ forgery . 95
6.6 Universal Forgery from WOTS+ forgery . 95
6.7 Universal Forgery from XMSS forgery . 96
6.8 Universal Forgery from XMSS forgery . 97
6.9 Magic state distillation for XMSS attack . 101

7.1 Montenaro’s quantum backtracking framework. 107
7.2 Classical-quantum enumeration tree . 114
7.3 Node distribution of enumeration tree. 115
7.4 Full classical-quantum enumeration tree . 119
7.5 Minimal quantum circuit of Umin

P . 124
7.6 Costing loop for quantum enumeration . 126
7.7 Plots of Kyber cost estimation without MaxDepth restriction. 130
7.8 Plots for Kyber cost estimation under MaxDepth restriction. 133

9.1 LDACS in commercial aviation. 156
9.2 Overview computational proof LDACS. 159
9.3 Simplified LDACS protocol. 161
9.4 Overview of proof of BR-Secrecy . 167
9.5 Tamarin flow for LDACS symbolic proof. 173

10.1 QA-KHAPE protocol. 178
10.2 KHAPECORE . 180
10.3 KHAPECORE active . 181
10.4 Simulation in G3. 183
10.5 Simulation of GetStatic(l) in G3. 184

B.1 Kyber cost estimation under MaxDepth restriction. 220
B.2 Kyber cost estimation under MaxDepth restriction. 221
B.3 Kyber cost estimation without MaxDepth restriction. 222
B.4 Kyber cost estimation under MaxDepth restriction. 223
B.5 Kyber cost estimation under MaxDepth restriction. 224
B.6 Kyber cost estimation under MaxDepth restriction. 225

List of Tables

1.1 Overview of contributions to the public analysis of NIST post-quantum schemes. 10

2.1 Cryptographic algorithm notation . 19

3.1 NIST security categories. 44
3.2 GCost to break AES under MaxDepth restrictions. 45

4.1 SPHINCS+ parameters with security parameter in bits, abridged from [Hül+20, Table 3] 52

5.1 Ramstake parameter sets. 68
5.2 Distribution of Hamming weights in Ramstake . 69
5.3 Experimental results of exploiting decryption failures. 80

6.1 Notation for attack procedures on SPHINCS+. 88
6.2 Probability that second preimage exists . 91
6.3 Application layer cost overview for SPHINCS+. 98
6.4 Logical quantum cost for a Grover oracle. 98
6.5 Number of logical quantum gates for Grover’s algorithm. 99
6.6 Number of logical quantum gates for second preimage attack. 99
6.7 Parameters for Magic state distillation of XMSS attack. 100
6.8 Fault-tolerant cost of universal forgery on SPHINCS+ . 103

7.1 T-gates and depth of quantum arithmetic. 122
7.2 Quantum cost of enumeration predicate. 122
7.3 Kyber parameters . 125
7.4 Attack parameters for experimental evaluation. 126
7.5 Cost estimation for “most-generous” classical-quantum enumeration 129
7.6 Legends for plots and tables of reported costs . 131
7.7 Cost estimation for “more-conservative” classical-quantum enumeration 134

8.1 Example simulation of GGM queries. 150
8.2 Example simulation of Dlog oracle. 151

9.1 References for lemmas for proof of BR-Secrecy . 166
9.2 Tamarin results for symbolic proof of LDACS protocol. 173

A.1 Complete experimental results of exploiting decryption failures. 215

B.1 Cost estimation for “more-conservative” classical-quantum enumeration 218
B.2 Cost estimation for “more-conservative” classical-quantum enumeration 219
B.3 Cost estimation for “alternative-bounds” classical-quantum enumeration 227
B.4 Cost estimation for “alternative-bounds” classical-quantum enumeration 228

211

Part IV

APPENDIX

A
Complete Results of Decryption Failure Attack

Here, we report the precise results from the decryption failure attack in
Chapter 5. Table A.1 shows the complete list of empirical results of our
attack for multiple secret-keys. For a growing number of decryption failures
the number of correct intervals decreases. However, the number of position
of ones in these intervals increases. Moreover the width of the empty spaces
increases, which improves the success probability of the attack. The size of
the set Isample is significantly lower than the number of enclosed positions of
ones, suggesting that each range encloses multiple secret bit positions.

Table A.1: Experimental results of our implementation where the column correct denotes the number of correct intervals detected,
and sample the number of intervals that require sampling.

seed decryption
failures #correct #sample #secret ones

in correct E[|β·,·|] E[l′′] E[l] E[P[success]]
per part #Grover

c14532 29 144 54 125 5036 2240 959 0.458 274

c14532 210 112 35 164 5019 2315 1167 0.4654 251

c14532 211 92 28 174 5467 2743 1249 0.4655 246

c14532 212 89 29 176 5098 2542 1206 0.4622 245

195bc2 29 131 47 142 5140 2408 1325 0.4689 262

195bc2 210 111 33 172 5078 2405 1238 0.4679 246

195bc2 211 98 33 166 5261 2487 1386 0.464 250

195bc2 212 91 33 168 5182 2482 1422 0.4695 248

0d86a4 29 144 53 136 4506 2256 1113 0.4729 265

0d86a4 210 111 43 155 4620 2580 1137 0.4869 253

0d86a4 211 90 42 154 4760 2924 1261 0.4942 252

0d86a4 212 89 42 154 4650 2971 1118 0.4924 252

170784 29 134 53 120 5140 2726 1268 0.4905 270

170784 210 117 41 151 4884 2502 1346 0.4878 255

170784 211 101 32 171 4962 2837 1584 0.5049 242

170784 212 102 30 177 4835 2822 1676 0.5042 239

215

B
Further Results for Quantum Enumeration

B.1 Results from Lower Bounds

B.1.1 Tables for the Quasi-Sqrt and the Canonical Bit Security

As an alternative to the comparison with the cost of Grover on AES one
can check whether the attack cost under depth constraints ever achieves a
“quasi-quadratic” speedup over classical enumeration (meaning going from
#T gates to

√
#T · h, where h is the height of T), as it could be expected

from Theorem 2. Alternatively, for a scheme like Kyber-512 (with analogous
notions for -768 and -1024), one could consider an attack successful if its
gate cost is lower than 2canonical bit security = 2128, albeit this is explicitly not
the cost metric chosen by NIST and plausibly targeted by the Kyber team. In
Tables B.1 and B.2 we present the results for these two metrics which are
computed as specified in Section 7.3.

B.1.2 Figures for the Query-based Result

In this section we present the figures from our estimations of the cost of
quantum enumeration that we have not reported in Section 7.3. For all
cost estimations the quantum operator GCost(W) and T-Depth(W) are
estimated as in Section 7.2.1 and with DF (W), QD(W),WQ(T ,W) as in
Section 7.1,

• Figures B.1 and B.2 show the cost estimation for Kyber-512 and Kyber-
768 with T-Depth(QPE(W)) ≤ {240, 264, 296}.

B.1.3 Figures for the Circuit-based Results

Next we present additional figures of quantum enumeration cost estimation to
the ones in Section 7.3. As before, GCost(W) and TDepth(W) are estimated
as in Section 7.2.2 and DF (W), QD(W),WQ(T ,W) as in Section 7.1,

• Figure B.3 shows the cost estimation without any MaxDepth constraint
on T-Depth(QPE(W)).

• Figures B.4 to B.6 show the cost estimation for Kyber-512, -768 and
Kyber-1024 assuming T-Depth(QPE(W)) ≤ {240, 264, 296}.

217

results from lower bounds 218

Table B.1: Summary of the values for the Jensen’s gap 2z at crossover points of our combined classical-quantum enumeration
attacks against Kyber and the quasi-square root speed up

√
#T · n . We remark that exact crossovers happen at fractional values of

z. In this table we round down threshold values of z. MaxDepth is abbreviated to MD. Cost is as in Table 7.6.

less likely to be feasible more likely to be feasible

Crossover points when comparing quasi-square-root against logE[Quantum GCost] (cf. Equation (7.7)) with …

…W as in Section 7.2.1 …W as in Section 7.2.2

MD Kyber LB/UB UB/UB LB/LB LB/UB UB/UB LB/LB

-512 z ≥ 0, k ≤ 25

Cost ≥ 263
z ≥ 29, k ≤ 11

Cost ≥ 298
z ≥ 25, k ≤ 59

Cost ≥ 289
z ≥ 2, k ≤ 24

Cost ≥ 290
z ≥ 45, k ≤ 12

Cost ≥ 298
z ≥ 41, k ≤ 63

Cost ≥ 289

-768 z ≥ 8, k ≤ 75

Cost ≥ 2166
z > 64

z ≥ 63, k ≤ 77

Cost ≥ 2165
z ≥ 25, k ≤ 67

Cost ≥ 2164
z > 64 z > 64

240

-1024 z ≥ 41, k ≤ 115

Cost ≥ 2261
z > 64 z > 64

z ≥ 57, k ≤ 105

Cost ≥ 2262
z > 64 z > 64

-512 z ≥ 0, k ≤ 26

Cost ≥ 263
z ≥ 17, k ≤ 11

Cost ≥ 298
z ≥ 13, k ≤ 59

Cost ≥ 289
z ≥ 0, k ≤ 26

Cost ≥ 275
z ≥ 33, k ≤ 5

Cost ≥ 298
z ≥ 29, k ≤ 54

Cost ≥ 289

-768 z ≥ 0, k ≤ 64

Cost ≥ 2157
z ≥ 54, k ≤ 33

Cost ≥ 2170
z ≥ 51, k ≤ 77

Cost ≥ 2165
z ≥ 13, k ≤ 67

Cost ≥ 2164
z > 64 z > 64

264

-1024 z ≥ 28, k ≤ 105

Cost ≥ 2262
z > 64 z > 64

z ≥ 45, k ≤ 100

Cost ≥ 2262
z > 64 z > 64

-512 z ≥ 0, k ≤ 26

Cost ≥ 263
z ≥ 1, k ≤ 2

Cost ≥ 298
z ≥ 0, k ≤ 40

Cost ≥ 289
z ≥ 0, k ≤ 26

Cost ≥ 275
z ≥ 24, k ≤ 1

Cost ≥ 298
z ≥ 24, k ≤ 40

Cost ≥ 289

-768 z ≥ 0, k ≤ 53

Cost ≥ 2126
z ≥ 38, k ≤ 12

Cost ≥ 2170
z ≥ 35, k ≤ 77

Cost ≥ 2165
z ≥ 0, k ≤ 64

Cost ≥ 2158
z ≥ 54, k ≤ 12

Cost ≥ 2171
z ≥ 52, k ≤ 62

Cost ≥ 2164296

-1024 z ≥ 12, k ≤ 100

Cost ≥ 2262
z > 64 z > 64

z ≥ 29, k ≤ 100

Cost ≥ 2262
z > 64 z > 64

-512 z ≥ 0, k ≤ 26

Cost ≥ 263
z ≥ 0, k ≤ 1

Cost ≥ 297
z ≥ 0, k ≤ 40

Cost ≥ 289
z ≥ 0, k ≤ 26

Cost ≥ 275
z ≥ 24, k ≤ 1

Cost ≥ 298
z ≥ 24, k ≤ 40

Cost ≥ 289

-768 z ≥ 0, k ≤ 37

Cost ≥ 2113
z ≥ 2, k ≤ 3

Cost ≥ 2171
z ≥ 0, k ≤ 31

Cost ≥ 2165
z ≥ 0, k ≤ 37

Cost ≥ 2138
z ≥ 28, k ≤ 3

Cost ≥ 2170
z ≥ 25, k ≤ 31

Cost ≥ 2165∞

-1024 z ≥ 0, k ≤ 33

Cost ≥ 2206
z ≥ 2, k ≤ 3

Cost ≥ 2269
z ≥ 0, k ≤ 1

Cost ≥ 2262
z ≥ 0, k ≤ 33

Cost ≥ 2232
z ≥ 29, k ≤ 3

Cost ≥ 2268
z ≥ 26, k ≤ 11

Cost ≥ 2263

-512 z ≥ 0, k = 0

Cost ≥ 289
z ≥ 0, k = 0

Cost ≥ 297
z ≥ 0, k = 0

Cost ≥ 289
z ≥ 24, k = 0

Cost ≥ 290
z ≥ 24, k = 0

Cost ≥ 298
z ≥ 24, k = 0

Cost ≥ 290

-768 z ≥ 0, k = 0

Cost ≥ 2165
z ≥ 0, k = 0

Cost ≥ 2170
z ≥ 0, k = 0

Cost ≥ 2165
z ≥ 25, k = 0

Cost ≥ 2165
z ≥ 25, k = 0

Cost ≥ 2171
z ≥ 25, k = 0

Cost ≥ 2165∞k=0

-1024 z ≥ 0, k = 0

Cost ≥ 2262
z ≥ 0, k = 0

Cost ≥ 2268
z ≥ 0, k = 0

Cost ≥ 2262
z ≥ 26, k = 0

Cost ≥ 2263
z ≥ 26, k = 0

Cost ≥ 2269
z ≥ 26, k = 0

Cost ≥ 2263

results from lower bounds 219

Table B.2: Summary of the values for the Jensen’s gap 2z at crossover points of our combined classical-quantum enumeration
attacks against Kyber and the canonical 128, 192, 256 bit security respectively. We remark that exact crossovers happen at fractional
values of z. In this table we round down threshold values of z. MaxDepth is abbreviated to MD. Cost is as in Table 7.6

less likely to be feasible more likely to be feasible

Crossover points when comparing quasi-square-root against logE[Quantum GCost] (cf. Equation (7.7)) with …

…W as in Section 7.2.1 …W as in Section 7.2.2

MD Kyber LB/UB UB/UB LB/LB LB/UB UB/UB LB/LB

-512 z ≥ 0, k ≤ 25

Cost ≥ 263
z ≥ 15, k ≤ 28

Cost ≥ 2126
z ≥ 6, k ≤ 92

Cost ≥ 2127
z ≥ 0, k ≤ 27

Cost ≥ 294
z ≥ 30, k ≤ 24

Cost ≥ 2127
z ≥ 22, k ≤ 96

Cost ≥ 2126

-768 z ≥ 0, k ≤ 87

Cost ≥ 2184
z ≥ 56, k ≤ 33

Cost ≥ 2190
z ≥ 50, k ≤ 114

Cost ≥ 2191
z ≥ 12, k ≤ 80

Cost ≥ 2191
z > 64 z > 64

240

-1024 z ≥ 44, k ≤ 112

Cost ≥ 2255
z > 64 z > 64

z ≥ 61, k ≤ 105

Cost ≥ 2254
z > 64 z > 64

-512 z ≥ 0, k ≤ 26

Cost ≥ 263
z ≥ 3, k ≤ 28

Cost ≥ 2126
z ≥ 0, k ≤ 83

Cost ≥ 2115
z ≥ 0, k ≤ 26

Cost ≥ 275
z ≥ 18, k ≤ 24

Cost ≥ 2127
z ≥ 10, k ≤ 79

Cost ≥ 2127

-768 z ≥ 0, k ≤ 64

Cost ≥ 2157
z ≥ 44, k ≤ 33

Cost ≥ 2190
z ≥ 38, k ≤ 114

Cost ≥ 2191
z ≥ 0, k ≤ 67

Cost ≥ 2190
z ≥ 60, k ≤ 37

Cost ≥ 2191
z ≥ 54, k ≤ 106

Cost ≥ 2191264

-1024 z ≥ 32, k ≤ 100

Cost ≥ 2254
z > 64 z > 64

z ≥ 49, k ≤ 100

Cost ≥ 2254
z > 64 z > 64

-512 z ≥ 0, k ≤ 26

Cost ≥ 263
z ≥ 0, k ≤ 2

Cost ≥ 2100
z ≥ 0, k ≤ 40

Cost ≥ 289
z ≥ 0, k ≤ 26

Cost ≥ 275
z ≥ 3, k ≤ 5

Cost ≥ 2126
z ≥ 0, k ≤ 46

Cost ≥ 2115

-768 z ≥ 0, k ≤ 53

Cost ≥ 2126
z ≥ 28, k ≤ 33

Cost ≥ 2190
z ≥ 22, k ≤ 77

Cost ≥ 2191
z ≥ 0, k ≤ 64

Cost ≥ 2158
z ≥ 44, k ≤ 26

Cost ≥ 2191
z ≥ 39, k ≤ 77

Cost ≥ 2190296

-1024 z ≥ 16, k ≤ 100

Cost ≥ 2254
z > 64 z > 64

z ≥ 33, k ≤ 100

Cost ≥ 2254
z > 64 z > 64

-512 z ≥ 0, k ≤ 26

Cost ≥ 263
z ≥ 0, k ≤ 1

Cost ≥ 297
z ≥ 0, k ≤ 40

Cost ≥ 289
z ≥ 0, k ≤ 26

Cost ≥ 275
z ≥ 0, k ≤ 1

Cost ≥ 2122
z ≥ 0, k ≤ 40

Cost ≥ 2113

-768 z ≥ 0, k ≤ 37

Cost ≥ 2113
z ≥ 0, k ≤ 3

Cost ≥ 2173
z ≥ 0, k ≤ 31

Cost ≥ 2165
z ≥ 0, k ≤ 37

Cost ≥ 2138
z ≥ 7, k ≤ 3

Cost ≥ 2191
z ≥ 0, k ≤ 31

Cost ≥ 2190∞

-1024 z ≥ 0, k ≤ 33

Cost ≥ 2206
z ≥ 16, k ≤ 3

Cost ≥ 2255
z ≥ 7, k ≤ 1

Cost ≥ 2255
z ≥ 0, k ≤ 33

Cost ≥ 2232
z ≥ 42, k ≤ 3

Cost ≥ 2255
z ≥ 34, k ≤ 11

Cost ≥ 2255

-512 z ≥ 0, k = 0

Cost ≥ 289
z ≥ 0, k = 0

Cost ≥ 297
z ≥ 0, k = 0

Cost ≥ 289
z ≥ 0, k = 0

Cost ≥ 2114
z ≥ 0, k = 0

Cost ≥ 2122
z ≥ 0, k = 0

Cost ≥ 2114

-768 z ≥ 0, k = 0

Cost ≥ 2165
z ≥ 0, k = 0

Cost ≥ 2170
z ≥ 0, k = 0

Cost ≥ 2165
z ≥ 0, k = 0

Cost ≥ 2190
z ≥ 5, k = 0

Cost ≥ 2191
z ≥ 0, k = 0

Cost ≥ 2190∞k=0

-1024 z ≥ 7, k = 0

Cost ≥ 2255
z ≥ 13, k = 0

Cost ≥ 2255
z ≥ 7, k = 0

Cost ≥ 2255
z ≥ 34, k = 0

Cost ≥ 2255
z ≥ 40, k = 0

Cost ≥ 2255
z ≥ 34, k = 0

Cost ≥ 2255

results from lower bounds 220

0 10 20 30 40 50 60
Log(Jensen's Gap) z

0

50

100

150

Lo
g z=0

Cost 64
k=25
y=12

z=0
Cost 64

k=25
y=12

Quasi-Sqrt(classical cost)
Expected cost of Grover on AES
Canonical bit security of Kyber
Expected cost of classical enumeration
Quantum GCost
Total GCost
Classical GCost
QRACM

(a) Kyber-512, MaxDepth = 240

0 10 20 30 40 50 60
Log(Jensen's Gap) z

0

50

100

150

Lo
g z=0

Cost 64
k=26
y=37

z=0
Cost 64

k=26
y=37

(b) Kyber-512, MaxDepth = 264

0 10 20 30 40 50 60
Log(Jensen's Gap) z

0

50

100

150

Lo
g z=0

Cost 64
k=26
y=37

z=0
Cost 64

k=26
y=37

(c) Kyber-512, MaxDepth = 296

Figure B.1: Cost estimation for Kyber-512 under different MaxDepthrestrictions with the instantiation for operator W as in
Section 7.2.1 and with DF = 1, QD = 1, b = 1 (see Section 7.1), and corresponding to the lower bound (LB/UB) for Conjecture 3.

results from lower bounds 221

0 10 20 30 40 50 60
Log(Jensen's Gap) z

0

50

100

150

200

250

300

Lo
g

z=0
Cost 185

k=87
y=0

z=0
Cost 185

k=87
y=0

z=2
Cost 180

k=84
y=0

z=8
Cost 167

k=75
y=0

Quasi-Sqrt(classical cost)
Expected cost of Grover on AES
Canonical bit security of Kyber
Expected cost of classical enumeration
Quantum GCost
Total GCost
Classical GCost
QRACM

(a) Kyber-768, MaxDepth = 240.

0 10 20 30 40 50 60
Log(Jensen's Gap) z

0

50

100

150

200

250

300

Lo
g

z=0
Cost 158

k=64
y=15

z=0
Cost 158

k=64
y=15

z=1
Cost 156

k=64
y=17

(b) Kyber-768, MaxDepth = 264.

0 10 20 30 40 50 60
Log(Jensen's Gap) z

0

50

100

150

200

250

300

Lo
g

z=0
Cost 127

k=53
y=60

z=0
Cost 127

k=53
y=60

z=1
Cost 125

k=53
y=62

(c) Kyber-768, MaxDepth = 296.

Figure B.2: Cost estimation for Kyber-768 under different MaxDepthrestrictions with the instantiation for operator W as in
Section 7.2.1 and with DF = 1, QD = 1, b = 1 (see Section 7.1), and corresponding to the lower bound (LB/UB) for Conjecture 3.

results from lower bounds 222

0 10 20 30 40 50 60
Log(Jensen's Gap) z

0

50

100

150

Lo
g

z=0
Cost 76

k=26
y=37

z=0
Cost 76

k=26
y=37

Quasi-Sqrt(classical cost)
Expected cost of Grover on AES
Canonical bit security of Kyber
Expected cost of classical enumeration
Quantum GCost
Total GCost
Classical GCost
QRACM

(a) Cost estimation for Kyber-512 w/ MaxDepth = ∞.

0 10 20 30 40 50 60
Log(Jensen's Gap) z

0

50

100

150

200

250

300

Lo
g

z=0
Cost 139

k=37
y=64

z=0
Cost 139

k=37
y=64

z=24
Cost 115

k=37
y=64

(b) Cost estimation for Kyber-768 w/ MaxDepth = ∞.

0 10 20 30 40 50 60
Log(Jensen's Gap) z

0
50

100
150
200
250
300
350
400
450
500

Lo
g

z=0
Cost 233

k=33
y=64

z=0
Cost 233

k=33
y=64

(c) Cost estimation for Kyber-1024 w/ MaxDepth = ∞.

Figure B.3: Cost estimation for Kyber without MaxDepth restriction and for operatorW as in Section 7.2.2 and with DF = 1,
QD = 1, b = 1, and corresponding to the lower bound (LB/UB) for Conjecture 3.

results from lower bounds 223

0 10 20 30 40 50 60
Log(Jensen's Gap) z

0

50

100

150

Lo
g

z=0
Cost 95

k=27
y=0

z=0
Cost 95

k=27
y=0

z=2
Cost 91

k=24
y=0

Quasi-Sqrt(classical cost)
Expected cost of Grover on AES
Canonical bit security of Kyber
Expected cost of classical enumeration
Quantum GCost
Total GCost
Classical GCost
QRACM

(a) Kyber-512, MaxDepth = 240

0 10 20 30 40 50 60
Log(Jensen's Gap) z

0

50

100

150

Lo
g

z=0
Cost 76

k=26
y=37

z=0
Cost 76

k=26
y=37

(b) Kyber-512, MaxDepth = 264

0 10 20 30 40 50 60
Log(Jensen's Gap) z

0

50

100

150

Lo
g

z=0
Cost 76

k=26
y=37

z=0
Cost 76

k=26
y=37

(c) Kyber-512, MaxDepth = 296

Figure B.4: Cost estimation for Kyber-512 under different MaxDepthrestrictions with operatorW as in Section 7.2.2 and with
DF = 1, QD = 1, b = 1, and corresponding to the lower bound (LB/UB) for Conjecture 3.

results from lower bounds 224

0 10 20 30 40 50 60
Log(Jensen's Gap) z

0

50

100

150

200

250

300

Lo
g

z=0
Cost 222

k=100
y=0

z=0
Cost 222

k=100
y=0

z=12
Cost 192

k=80
y=0

z=17
Cost 181

k=73
y=0

z=25
Cost 165

k=67
y=7

Quasi-Sqrt(classical cost)
Expected cost of Grover on AES
Canonical bit security of Kyber
Expected cost of classical enumeration
Quantum GCost
Total GCost
Classical GCost
QRACM

(a) Kyber-768, MaxDepth = 240

0 10 20 30 40 50 60
Log(Jensen's Gap) z

0

50

100

150

200

250

300

Lo
g

z=0
Cost 191

k=67
y=5

z=0
Cost 191

k=67
y=5

z=13
Cost 165

k=67
y=31

z=17
Cost 157

k=67
y=39

(b) Kyber-768, MaxDepth = 264

0 10 20 30 40 50 60
Log(Jensen's Gap) z

0

50

100

150

200

250

300

Lo
g

z=0
Cost 159

k=64
y=64

z=0
Cost 159

k=64
y=64

z=19
Cost 125

k=43
y=63

(c) Kyber-768, MaxDepth = 296

Figure B.5: Cost estimation for Kyber-768 under different MaxDepthrestrictions with the instantiation for operator W as in
Section 7.2.2 and with DF = 1, QD = 1, b = 1 (see Section 7.1), and corresponding to the lower bound (LB/UB) for Conjecture 3.

results from lower bounds 225

0 10 20 30 40 50 60
Log(Jensen's Gap) z

0
50

100
150
200
250
300
350
400
450
500

Lo
g

z=0
Cost 406

k=195
y=0

z=0
Cost 406

k=195
y=0

z=57
Cost 263

k=105
y=0

z=61
Cost 255

k=105
y=8

Quasi-Sqrt(classical cost)
Expected cost of Grover on AES
Canonical bit security of Kyber
Expected cost of classical enumeration
Quantum GCost
Total GCost
Classical GCost
QRACM

(a) Kyber-1024, MaxDepth = 240.

0 10 20 30 40 50 60
Log(Jensen's Gap) z

0
50

100
150
200
250
300
350
400
450
500

Lo
g

z=0
Cost 362

k=149
y=0

z=0
Cost 362

k=149
y=0

z=45
Cost 263

k=100
y=15

z=49
Cost 255

k=100
y=23

(b) Kyber-1024, MaxDepth = 264.

0 10 20 30 40 50 60
Log(Jensen's Gap) z

0
50

100
150
200
250
300
350
400
450
500

Lo
g

z=0
Cost 321

k=109
y=5

z=0
Cost 321

k=109
y=5

z=29
Cost 263

k=100
y=47

z=33
Cost 255

k=100
y=55

(c) Kyber-1024, MaxDepth = 296.

Figure B.6: Cost estimation for Kyber-1024 under different MaxDepthrestrictions with the instantiation for operatorW as in
Section 7.2.2 and with DF = 1, QD = 1, b = 1 (see Section 7.1), and corresponding to the lower bound (LB/UB) for Conjecture 3.

results beyond lower bounds 226

B.2 Results beyond Lower Bounds

We replicate the analysis performed in Section 7.3.2, estimating the cost of
a combined classical-quantum attack as described in Sec. 7.1.3 and 7.1.4.
In Tables B.3 and B.4 we summarize the values for the Jensen’s gap 2z at
crossover points of our combined classical-quantum enumeration attacks
against the quasi-square-root and the canonical 128, 192, 256 bit security of
Kyber.

The tables corresponds to attacks in the settings forW as in Section 7.2.1
and Section 7.2.2 with C = 2, ε = 20, b = 1/64, resulting in DF(W) =

n log C = n and QD(W) = ⌈20 · log(1/δDMV)⌉ = ⌈20 · log(n)⌉ , and
WQ(T ,W) = 64

√
#T h. We omit the plots for the alternative bounds.

results beyond lower bounds 227

Table B.3: Summary of the values for the Jensen’s gap 2z at crossover points of our combined classical-quantum enumeration
attacks against Kyber and the quasi-square root speed up

√
n#T . We remark that exact crossovers happen at fractional values of z.

In this table we round down threshold values of z. MaxDepth is abbreviated to MD. The results are estimated from the bounds
C = 2, ε = 20, b = 1/64.

less likely to be feasible more likely to be feasible

Crossover points when comparing quasi-square-root against logE[Quantum GCost] (cf. Equation (7.7)) with …

…W as in Section 7.2.1 …W as in Section 7.2.2

MD Kyber LB/UB UB/UB LB/LB LB/UB UB/UB LB/LB

-512 z ≥ 0, k ≤ 25

Cost ≥ 290
z ≥ 43, k ≤ 11

Cost ≥ 298
z ≥ 39, k ≤ 59

Cost ≥ 289
z ≥ 16, k ≤ 24

Cost ≥ 290
z ≥ 59, k ≤ 8

Cost ≥ 298
z ≥ 55, k ≤ 58

Cost ≥ 289

-768 z ≥ 22, k ≤ 69

Cost ≥ 2166
z > 64 z > 64

z ≥ 39, k ≤ 67

Cost ≥ 2165
z > 64 z > 64

240

-1024 z ≥ 55, k ≤ 109

Cost ≥ 2262
z > 64 z > 64 z > 64 z > 64 z > 64

-512 z ≥ 0, k ≤ 26

Cost ≥ 272
z ≥ 31, k ≤ 4

Cost ≥ 298
z ≥ 27, k ≤ 55

Cost ≥ 289
z ≥ 7, k ≤ 26

Cost ≥ 290
z ≥ 47, k ≤ 1

Cost ≥ 298
z ≥ 46, k ≤ 40

Cost ≥ 289

-768 z ≥ 10, k ≤ 64

Cost ≥ 2166
z > 64 z > 64

z ≥ 27, k ≤ 67

Cost ≥ 2165
z > 64 z > 64

264

-1024 z ≥ 43, k ≤ 100

Cost ≥ 2262
z > 64 z > 64

z ≥ 60, k ≤ 100

Cost ≥ 2261
z > 64 z > 64

-512 z ≥ 0, k ≤ 26

Cost ≥ 272
z ≥ 22, k ≤ 1

Cost ≥ 297
z ≥ 21, k ≤ 40

Cost ≥ 290
z ≥ 7, k ≤ 26

Cost ≥ 290
z ≥ 46, k ≤ 1

Cost ≥ 298
z ≥ 46, k ≤ 40

Cost ≥ 289

-768 z ≥ 0, k ≤ 61

Cost ≥ 2154
z ≥ 52, k ≤ 12

Cost ≥ 2171
z ≥ 49, k ≤ 62

Cost ≥ 2165
z ≥ 11, k ≤ 58

Cost ≥ 2165
z > 64 z > 64

296

-1024 z ≥ 27, k ≤ 100

Cost ≥ 2262
z > 64 z > 64

z ≥ 44, k ≤ 99

Cost ≥ 2261
z > 64 z > 64

-512 z ≥ 0, k ≤ 26

Cost ≥ 272
z ≥ 22, k ≤ 1

Cost ≥ 297
z ≥ 21, k ≤ 40

Cost ≥ 290
z ≥ 7, k ≤ 26

Cost ≥ 290
z ≥ 46, k ≤ 1

Cost ≥ 298
z ≥ 46, k ≤ 40

Cost ≥ 289

-768 z ≥ 0, k ≤ 37

Cost ≥ 2136
z ≥ 25, k ≤ 3

Cost ≥ 2170
z ≥ 22, k ≤ 31

Cost ≥ 2165
z ≥ 0, k ≤ 37

Cost ≥ 2161
z ≥ 50, k ≤ 3

Cost ≥ 2171
z ≥ 48, k ≤ 31

Cost ≥ 2165∞

-1024 z ≥ 0, k ≤ 33

Cost ≥ 2229
z ≥ 26, k ≤ 3

Cost ≥ 2268
z ≥ 23, k ≤ 11

Cost ≥ 2263
z ≥ 0, k ≤ 33

Cost ≥ 2255
z ≥ 52, k ≤ 3

Cost ≥ 2269
z ≥ 50, k ≤ 11

Cost ≥ 2262

-512 z ≥ 22, k = 0

Cost ≥ 289
z ≥ 22, k = 0

Cost ≥ 297
z ≥ 22, k = 0

Cost ≥ 289
z ≥ 46, k = 0

Cost ≥ 290
z ≥ 46, k = 0

Cost ≥ 298
z ≥ 46, k = 0

Cost ≥ 290

-768 z ≥ 22, k = 0

Cost ≥ 2166
z ≥ 22, k = 0

Cost ≥ 2171
z ≥ 22, k = 0

Cost ≥ 2166
z ≥ 48, k = 0

Cost ≥ 2165
z ≥ 48, k = 0

Cost ≥ 2171
z ≥ 48, k = 0

Cost ≥ 2165∞k=0

-1024 z ≥ 23, k = 0

Cost ≥ 2263
z ≥ 23, k = 0

Cost ≥ 2268
z ≥ 23, k = 0

Cost ≥ 2263
z ≥ 50, k = 0

Cost ≥ 2262
z ≥ 50, k = 0

Cost ≥ 2268
z ≥ 50, k = 0

Cost ≥ 2262

results beyond lower bounds 228

Table B.4: Summary of the values for the Jensen’s gap 2z at crossover points of our combined classical-quantum enumeration
attacks against Kyber and the canonical 128, 192, 256 bit security respectively. We remark that exact crossovers happen at fractional
values of z. In this table we round down threshold values of z. MaxDepth is abbreviated to MD. Cost is as in Table 7.6. The results
are estimated from the bounds C = 2, ε = 20, b = 1/64.

less likely to be feasible more likely to be feasible

Crossover points when comparing quasi-square-root against logE[Quantum GCost] (cf. Equation (7.7)) with …

…W as in Section 7.2.1 …W as in Section 7.2.2

MD Kyber LB/UB UB/UB LB/LB LB/UB UB/UB LB/LB

-512 z ≥ 0, k ≤ 25

Cost ≥ 290
z ≥ 29, k ≤ 28

Cost ≥ 2126
z ≥ 20, k ≤ 92

Cost ≥ 2127
z ≥ 0, k ≤ 39

Cost ≥ 2126
z ≥ 44, k ≤ 27

Cost ≥ 2127
z ≥ 36, k ≤ 96

Cost ≥ 2126

-768 z ≥ 10, k ≤ 81

Cost ≥ 2191
z > 64

z ≥ 64, k ≤ 114

Cost ≥ 2191
z ≥ 26, k ≤ 69

Cost ≥ 2191
z > 64 z > 64

240

-1024 z ≥ 59, k ≤ 105

Cost ≥ 2254
z > 64 z > 64 z > 64 z > 64 z > 64

-512 z ≥ 0, k ≤ 26

Cost ≥ 272
z ≥ 17, k ≤ 11

Cost ≥ 2126
z ≥ 8, k ≤ 89

Cost ≥ 2127
z ≥ 0, k ≤ 24

Cost ≥ 298
z ≥ 33, k ≤ 12

Cost ≥ 2126
z ≥ 24, k ≤ 69

Cost ≥ 2127

-768 z ≥ 0, k ≤ 64

Cost ≥ 2186
z ≥ 58, k ≤ 37

Cost ≥ 2191
z ≥ 52, k ≤ 106

Cost ≥ 2191
z ≥ 14, k ≤ 67

Cost ≥ 2191
z > 64 z > 64

264

-1024 z ≥ 47, k ≤ 100

Cost ≥ 2254
z > 64 z > 64

z ≥ 63, k ≤ 100

Cost ≥ 2255
z > 64 z > 64

-512 z ≥ 0, k ≤ 26

Cost ≥ 272
z ≥ 1, k ≤ 4

Cost ≥ 2126
z ≥ 0, k ≤ 47

Cost ≥ 2111
z ≥ 0, k ≤ 26

Cost ≥ 297
z ≥ 17, k ≤ 1

Cost ≥ 2127
z ≥ 8, k ≤ 40

Cost ≥ 2127

-768 z ≥ 0, k ≤ 61

Cost ≥ 2154
z ≥ 42, k ≤ 26

Cost ≥ 2191
z ≥ 36, k ≤ 77

Cost ≥ 2191
z ≥ 0, k ≤ 67

Cost ≥ 2187
z ≥ 59, k ≤ 12

Cost ≥ 2190
z ≥ 53, k ≤ 70

Cost ≥ 2190296

-1024 z ≥ 31, k ≤ 100

Cost ≥ 2254
z > 64 z > 64

z ≥ 48, k ≤ 91

Cost ≥ 2254
z > 64 z > 64

-512 z ≥ 0, k ≤ 26

Cost ≥ 272
z ≥ 0, k ≤ 1

Cost ≥ 2119
z ≥ 0, k ≤ 40

Cost ≥ 2111
z ≥ 0, k ≤ 26

Cost ≥ 297
z ≥ 17, k ≤ 1

Cost ≥ 2127
z ≥ 8, k ≤ 40

Cost ≥ 2127

-768 z ≥ 0, k ≤ 37

Cost ≥ 2136
z ≥ 4, k ≤ 3

Cost ≥ 2191
z ≥ 0, k ≤ 31

Cost ≥ 2187
z ≥ 0, k ≤ 37

Cost ≥ 2161
z ≥ 30, k ≤ 3

Cost ≥ 2191
z ≥ 22, k ≤ 31

Cost ≥ 2191∞

-1024 z ≥ 0, k ≤ 33

Cost ≥ 2229
z ≥ 39, k ≤ 3

Cost ≥ 2255
z ≥ 31, k ≤ 11

Cost ≥ 2255
z ≥ 0, k ≤ 33

Cost ≥ 2255
z > 64

z ≥ 57, k ≤ 11

Cost ≥ 2255

-512 z ≥ 0, k = 0

Cost ≥ 2111
z ≥ 0, k = 0

Cost ≥ 2119
z ≥ 0, k = 0

Cost ≥ 2111
z ≥ 9, k = 0

Cost ≥ 2127
z ≥ 17, k = 0

Cost ≥ 2127
z ≥ 9, k = 0

Cost ≥ 2127

-768 z ≥ 0, k = 0

Cost ≥ 2188
z ≥ 2, k = 0

Cost ≥ 2191
z ≥ 0, k = 0

Cost ≥ 2188
z ≥ 22, k = 0

Cost ≥ 2191
z ≥ 28, k = 0

Cost ≥ 2191
z ≥ 22, k = 0

Cost ≥ 2191∞k=0

-1024 z ≥ 31, k = 0

Cost ≥ 2255
z ≥ 36, k = 0

Cost ≥ 2255
z ≥ 31, k = 0

Cost ≥ 2255
z ≥ 57, k = 0

Cost ≥ 2255
z ≥ 63, k = 0

Cost ≥ 2255
z ≥ 57, k = 0

Cost ≥ 2255

1https://github.com/mtiepelt/
dissertation

2https://github.com/pfasante/phd_
thesis/tree/master

3https://people.mpi-sws.org/
~turon/turon-thesis.pdf

4https://bitbucket.org/amiede/
classicthesis/

5https://github.com/Tufte-LaTeX/
tufte-latex

6https://www.sublimetext.com/

7https://ipe.otfried.org/

8https://www.npmjs.com/package/
write-good

9https://github.com/btford/
write-good

10https://www.thesaurus.com/

11https://www.deepl.com/de/write

Colophon

This thesis was typeset using LATEX and the memoir documentclass. The
template1 is based on Friedrich Wiemer’s thesis2, which itself is based Aaron
Turon’s thesis 3, itself again a mixture of classicthesis4 by André Miede
and tufte-latex5, based on Edward Tufte’s Beautiful Evidence.

The bibliography was processed by Biblatex. The body text is set 10/14pt
(long primer) on a 26pc measure. The margin text is set 8/9pt (brevier) on
a 12pc measure. Matthew Carter’s Charter acts as both the text and display
typeface. Monospaced text uses Jim Lyles’s Bitstream Vera Mono (“Bera
Mono”).

The thesis was written using Sublime Text6 with the LatexTools Plugin, many of
the graphics were build using Ipe7. The writing process was supported by the
write-good linter8 with the corresponding Sublime Text plugin9. Additionally,
Thesaurus10 and DeepL11 were used to improve the wording of individual
paragraphs.

https://github.com/mtiepelt/dissertation
https://github.com/mtiepelt/dissertation
https://github.com/pfasante/phd_thesis/tree/master
https://github.com/pfasante/phd_thesis/tree/master
https://people.mpi-sws.org/~turon/turon-thesis.pdf
https://people.mpi-sws.org/~turon/turon-thesis.pdf
https://bitbucket.org/amiede/classicthesis/
https://bitbucket.org/amiede/classicthesis/
https://github.com/Tufte-LaTeX/tufte-latex
https://github.com/Tufte-LaTeX/tufte-latex
https://www.sublimetext.com/
https://ipe.otfried.org/
https://www.npmjs.com/package/write-good
https://www.npmjs.com/package/write-good
https://github.com/btford/write-good
https://github.com/btford/write-good
https://www.thesaurus.com/
https://www.deepl.com/de/write

	Acknowledgments
	Abstract
	Publications
	Contents
	Questions & Answers
	Motivation and Contribution
	The Why
	The What — Research Questions
	The How — Results and Publications
	Other Hows — Other Publications

	Foundations
	Notation
	Cryptographic Components and Security Notions

	Costing Adversaries on Post-Quantum Cryptography
	Summary
	Quantum Algorithms and Cost Models
	Quantum Computing
	Classical Cost Model
	Quantum Cost Model
	NIST Security Framework

	Post-Quantum Cryptography
	Mersenne number based Cryptography
	Hash-based Cryptography
	Lattice-based Cryptography

	Exploiting Decryption Failures
	Decryption Failures in Mersenne-based Submissions to NIST
	Failure attack
	Attack on Ramstake

	On the Cost of Universal Signature Forgery in SPHINCS+
	On the Fault-Tolerant Cost of Computing a Second Preimage
	Universal Signature Forgeries in SPHINCS+
	Quantum Circuit Gate Cost
	Fault-Tolerant Resource Estimation

	The Cost of Quantum Lattice Enumeration
	Estimating the Cost of Quantum Enumeration
	Instantiations for the Quantum Operator W
	Estimating Quantum Enumeration Attacks on Kyber

	Conclusion

	Quantum-secure Protocols
	Summary
	Security Models for Authenticated Key Exchange
	Computational Security Model
	Predicates for Authenticated Key Exchange
	Security of Password Authenticated Key Exchange
	Quantum Annoying-ness in the Generic Group Model.

	Post-Quantum-Ready Authenticated Key Agreement
	A Simplified LDACS Protocol
	Computational Proof
	Symbolic Security

	Making an Asymmetric PAKE Quantum-Annoying
	Quantum Annoying KHAPE-HMQV
	Security Framework: The KHAPECORE Game
	Proof of aPAKE Security

	Conclusion

	Bibliography
	Acronyms
	List of Figures
	List of Tables
	Appendix
	Complete Results of Decryption Failure Attack
	Further Results for Quantum Enumeration
	Results from Lower Bounds
	Results beyond Lower Bounds

