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1Lee et al., TLS 1.3 in Practice:How TLS 1.3 Contributes to the Internet
2,3https://serpwatch.io/blog/ssl-stats/
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How does quantum computing affect the security of public-key cryptography?
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Goal: Lower bound cost of “best” attack on lattice-based cryptography
Analysis-Toola, Kyber as case study example aavailable on Github
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infeasible amount of resources to solve it.

Kyber Shortest Vector Problem (SVP) quantum
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GCost(“quantum enumeration”) ≥ GCost(“attacking AES”)
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Limitation: For quantum enumeration only asymptotic upper bound2,3 known

! Concrete cost of quantum enumeration not clear
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Concrete security of cryptographic standards remains unknown.
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Classical enumeration with extreme pruning1

Search space is n-dimensional lattice

DFS over enumeration tree
Complexity: O(#T )

DFS as repetition of quantum walks2

#QW × O
(︂√

#T · n
)︂
×

quantum operator⏟⏞⏞⏟
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quantum walk
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GCost: Number of universal quantum gates ▷ lower bound on computation

Depth: Circuit depth ▷ lower bound on time
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GCost: Number of universal quantum gates ▷ lower bound on computation

Depth: Circuit depth ▷ lower bound on time
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a) Advanced Encryption Standard (AES) believed to be quantum-secure1

Kyber quantum-secure2,
if GCost(“attacking Kyber”) ≥ GCost(“attacking AES”)

AES-128 Kyber-512

AES-192 Kyber-768

AES-256 Kyber-1024

b) NIST’s hypothetical MaxDepth ∈ {240, 264, 296} for Depth
“number of gates [...] quantum computing [...] expected to serially perform [...]”3
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Enumeration as quantum walk: #QW × O
(︂√

#T · n
)︂
×W⏞ ⏟⏟ ⏞

quantum walk

GCost(QEnum) = #QW ·O
(︂√

#T · n
)︂
· GCost(W)

Depth(QEnum) = O
(︂√

#T · n
)︂
· Depth(W)

Asymptotic lower bounds
Heuristics, experiments
Constant/ polynomial factors
...

✓

Restriction: Depth ≤ MaxDepth ∈ {240, 264, 296}: Adapt algorithm. ✓
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264 75 < 93 173 > 157 288 > 221

296 75 < 83 143 > 125 232 > 189⏞ ⏟⏟ ⏞ ⏞ ⏟⏟ ⏞
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