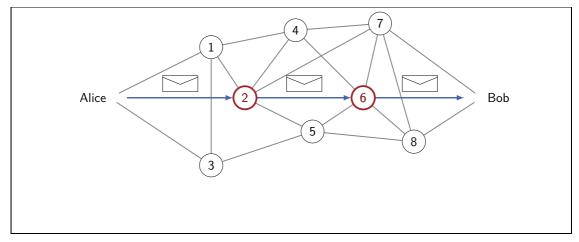
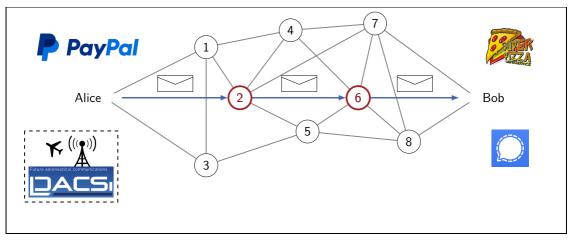
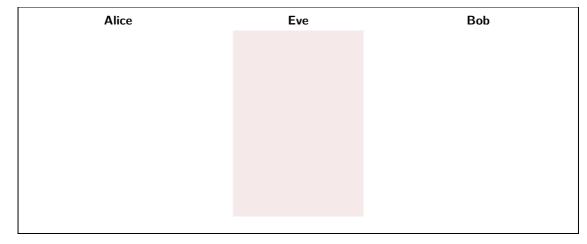

Costing Adversaries on Quantum-secure Cryptography

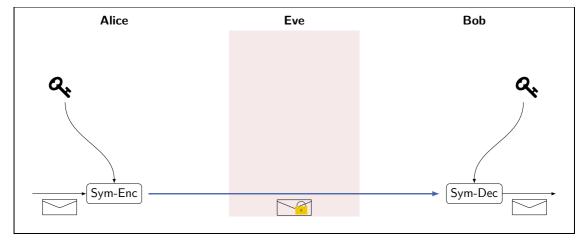
A Dissertation Talk Marcel Tiepelt | January 23rd, 2025 Reviewers Jörn Müller-Quade Douglas Stebila Daniel Loebenberger



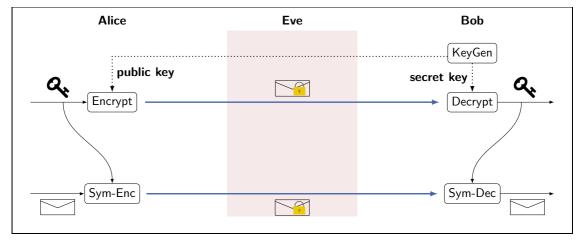
www.kit.edu

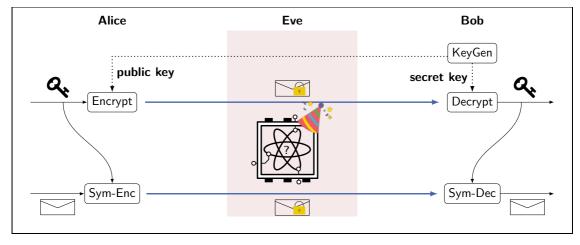


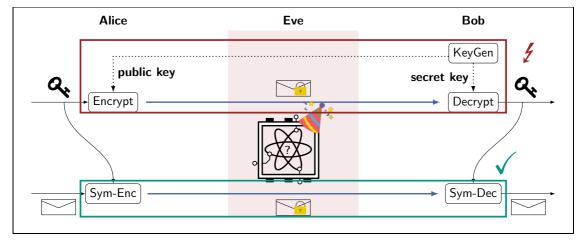


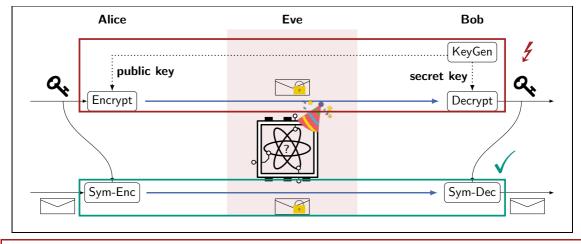


¹Lee et al., TLS 1.3 in Practice:How TLS 1.3 Contributes to the Internet ^{2,3}https://serpwatch.io/blog/ssl-stats/





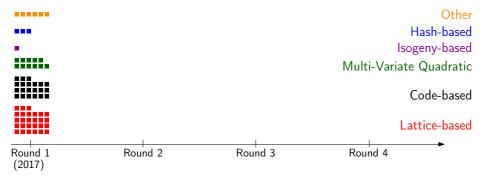




How does quantum computing affect the security of public-key cryptography?

Today's talk

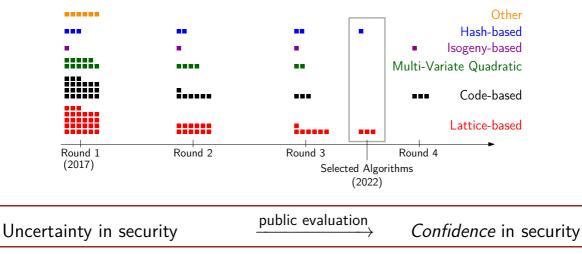
The Internet


I. Advancements in quantum-secure cryptography

II. When is a cryptographic protocol quantum-secure?

III. The impact of quantum lattice enumeration

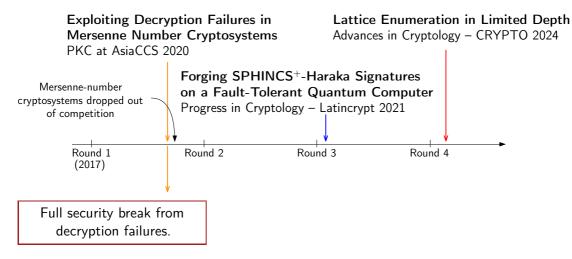
NIST post-quantum standardization

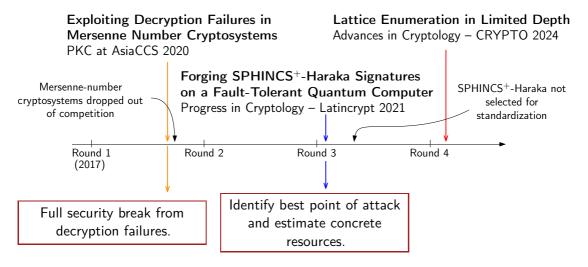


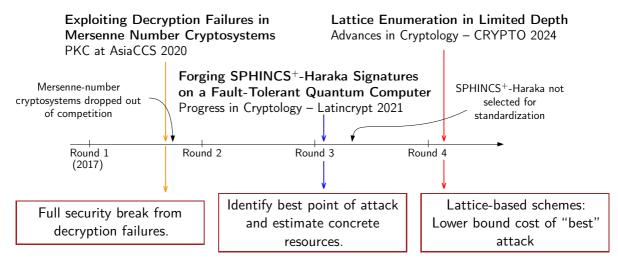
Uncertainty in security

Advancements in quantum-secure cryptography

NIST post-quantum standardization







Advancements in quantum-secure cryptography

Making an Asymmetric PAKE Quantum-Annoying by Hiding Group Elements ESORICS 2023 Post-Quantum Ready Key Agreement for Aviation Communications in Cryptology 2024

Quantum-Annoying: Intermediate security for Password Authenticated Key Exchange

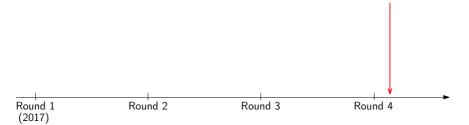
Making an Asymmetric PAKE Quantum-Annoying by Hiding Group Elements ESORICS 2023 Post-Quantum Ready Key Agreement for Aviation Communications in Cryptology 2024

Quantum-Annoying: Intermediate security for Password Authenticated Key Exchange

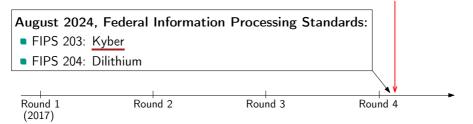
Making an Asymmetric PAKE Quantum-Annoying by Hiding Group Elements ESORICS 2023 Quantum-secure data-link for civil aviation from NIST post-quantum schemes.

Post-Quantum Ready Key Agreement for Aviation Communications in Cryptology 2024

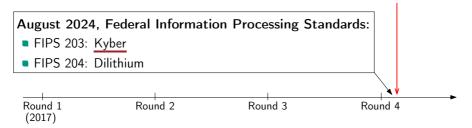
Protocol under standardization by ICAO



Making an Asymmetric PAKE Quantum-Annoying by Hiding Group Elements ESORICS 2023 Post-Quantum Ready Key Agreement for Aviation Communications in Cryptology 2024



Lattice Enumeration in Limited Depth Advances in Cryptology – CRYPTO 2024



Lattice Enumeration in Limited Depth Advances in Cryptology – CRYPTO 2024

Lattice Enumeration in Limited Depth Advances in Cryptology – CRYPTO 2024

- Goal: Lower bound cost of "best" attack on lattice-based cryptography
- Analysis-Tool^a, Kyber as case study example

^aavailable on Github

RFC = technical documentation and development of the internet

	Workgroup: TLS Working Group Internet-Draft: draft-celi-wiggers-tls-authkem-0 Published: 17 October 2024 Intended Status: Informational Expires: 20 April 2025 Authors: T. Wiggers S. Celi P. Schwabe PQShield Brave Software		Protecting Chrome Traffic with Hybrid Kyber KEM	
Workgroup:	D. Stebila N. Sullivan University of Waterloo Transport Layer Security	Workgroup: Internet-Draft: Published:	Transport Layer Security draft-kwiatkowski-tis-ecdhe-mikem-02 10 September 2024 r the migration to quantum-	
Internet-Draft: Published Inter Kyber	draft-connolly-tis-mikem-key-agreement-01 22 March 2024	Intended Status: Expires: Authors:	Informational ling this major transition, we quantum-resistant algorithm affort is a success.	ns,
Author:	D. Connolly SandbookQ Post-Quantum Key Agreement for TL	PQShield	P. Kampanakis B. E. Westerbaan AWS Cloudflare Kyber hographic algorithms to creation	
	. , , ,	University of wate	lethod, and NIST's PQC	
			ntum hybrid ECDHE-MLKEM ement for TLSv1.3	

Today's talk

The Internet

I. Advancements in quantum-secure cryptography

II. When is a cryptographic protocol quantum-secure?

III. The impact of quantum lattice enumeration

When is a cryptosystem quantum-secure?

1) A cryptosystem is secure, if a certain computational problem is *difficult*.

KyberShortest Vector Problem (SVP)I) A cryptosystem is secure, if a certain computational problem is difficult.

When is a cryptosystem quantum-secure?

- KyberShortest Vector Problem (SVP)1) A cryptosystem is secure, if a certain computational problem is difficult.
- 2) Computational problem is believed to be *difficult*, if the <u>best algorithm</u> requires an <u>infeasible</u> amount of <u>resources</u> to solve it.

Kyber Shortest Vector Problem (SVP) 1) A cryptosystem is secure, if a certain computational problem is *difficult*.

2) Computational problem is believed to be *difficult*, if the <u>best algorithm</u> requires an <u>infeasible</u> amount of <u>resources</u> to solve it.

Justification

We don't know for sure.

We don't know for sure.

Lattice-reduction performs significantly better than other known algorithms.

We don't know for sure.

Lattice-reduction performs significantly better than other known algorithms.

Leading cost is enumeration or sieving¹

¹Chailloux et al. 2021 Lattice Sieving via Quantum Random Walks

We don't know for sure.

Lattice-reduction performs significantly better than other known algorithms.

- Leading cost is **enumeration** or sieving¹
- Limitation: For quantum enumeration only asymptotic upper bound^{2,3} known

When is a cryptographic protocol quantum-secure?

¹Chailloux et al. 2021 Lattice Sieving via Quantum Random Walks

²Bai et al. 2023 Concrete Analysis of Quantum Lattice Enumeration

³Aono et al. 2018 Quantum Lattice Enumeration and Tweaking Discrete Pruning

What is the best algorithm to solve SVP?

We don't know for sure.

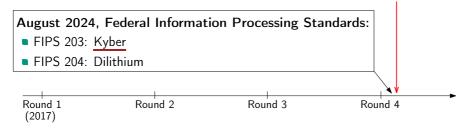
Lattice-reduction performs significantly better than other known algorithms.

- Leading cost is **enumeration** or sieving¹
- Limitation: For quantum enumeration only asymptotic upper bound^{2,3} known

Concrete cost of quantum enumeration not clear

¹Chailloux et al. 2021 Lattice Sieving via Quantum Random Walks

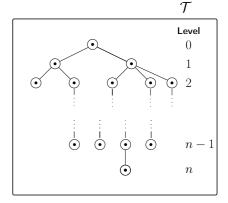
²Bai et al. 2023 Concrete Analysis of Quantum Lattice Enumeration


³Aono et al. 2018 Quantum Lattice Enumeration and Tweaking Discrete Pruning

When is a cryptographic protocol quantum-secure?

Why analyzing lattice enumeration matters

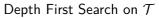
Lattice Enumeration in Limited Depth Advances in Cryptology – CRYPTO 2024

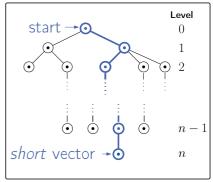


Concrete security of cryptographic standards remains unknown.

Classical enumeration with extreme pruning¹

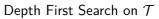
• Search space is *n*-dimensional lattice

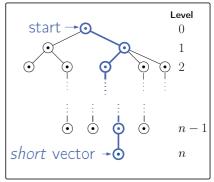




Classical enumeration with extreme pruning¹

- Search space is *n*-dimensional lattice
- DFS over enumeration tree

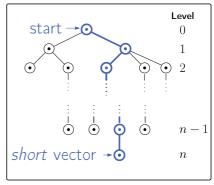



¹Gama et al. 2010 Lattice Enumeration Using Extreme Pruning

Classical enumeration with extreme pruning¹

- Search space is *n*-dimensional lattice
- **DFS** over enumeration tree
- Complexity: O(*T)

¹Gama et al. 2010 Lattice Enumeration Using Extreme Pruning



Classical enumeration with extreme pruning¹

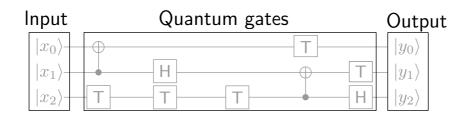
- Search space is *n*-dimensional lattice
- **DFS** over enumeration tree
- Complexity: O(*T)

DFS as repetition of quantum walks ²
$\# QW \times \underbrace{\mathcal{O}\left(\sqrt{\#\mathcal{T}\cdot n}\right) \times \underbrace{\mathcal{W}}_{\text{quantum walk}}}_{\text{quantum walk}}$

Depth First Search on ${\mathcal T}$

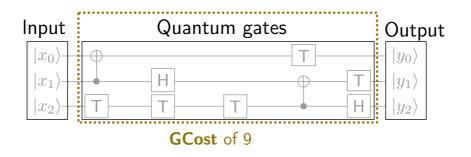
¹Gama et al. 2010 Lattice Enumeration Using Extreme Pruning
 ²Montanaro 2018, Quantum-Walk Speedup of Backtracking Algorithms

When is a cryptographic protocol quantum-secure?



Kyber Shortest Vector Problem (SVP) quantum enumeration
1) A cryptosystem is secure, if a certain computational problem is *difficult*.
2) Computational problem is believed to be *difficult*, if the <u>best algorithm</u> requires an infeasible amount of resources to solve it.

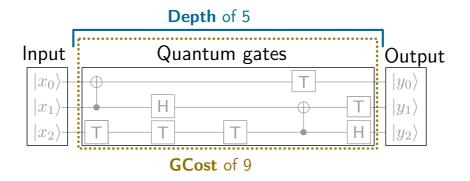
Resources: The quantum circuit model


When is a cryptographic protocol quantum-secure?

Resources: The quantum circuit model

• GCost: Number of universal quantum gates

▷ lower bound on computation


Resources: The quantum circuit model

- GCost: Number of universal quantum gates
- Depth: Circuit depth

▷ lower bound on computation

▷ lower bound on time

a) Advanced Encryption Standard (AES) believed to be quantum-secure¹

The Internet

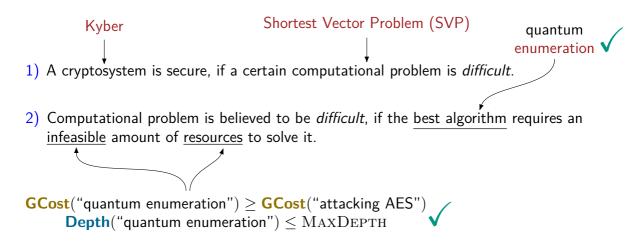
¹Jaques et al. 2020 Implementing Grover Oracles for Quantum Key Search on AES and LowMC

a) Advanced Encryption Standard (AES) believed to be quantum-secure¹

Kyber quantum-secure2,
if GCost("attacking Kyber") \geq GCost("attacking AES")AES-128Kyber-512AES-192Kyber-768AES-256Kyber-1024

¹Jaques et al. 2020 Implementing Grover Oracles for Quantum Key Search on AES and LowMC ^{2,3}National Institute for Standards and Technology 2017, Post-Quantum Cryptography Call for Proposals

a) Advanced Encryption Standard (AES) believed to be *quantum-secure*¹


Kyber quantum-secure2,
if GCost("attacking Kyber") \geq GCost("attacking AES")AES-128Kyber-512AES-192Kyber-768AES-256Kyber-1024

b) NIST's hypothetical $MAXDEPTH \in \{2^{40}, 2^{64}, 2^{96}\}$ for **Depth** "number of gates [...] quantum computing [...] expected to serially perform [...]"³

¹Jaques et al. 2020 Implementing Grover Oracles for Quantum Key Search on AES and LowMC ^{2,3}National Institute for Standards and Technology 2017, Post-Quantum Cryptography Call for Proposals


Today's talk

The Internet

I. Advancements in quantum-secure cryptography

II. When is a cryptographic protocol quantum-secure?

III. The impact of quantum lattice enumeration

Enumeration as quantum walk:
$$\#QW \times \underbrace{O\left(\sqrt{\#T \cdot n}\right) \times \mathcal{W}}_{\text{quantum walk}}$$

Enumeration as quantum walk:
$$\#QW \times \underbrace{O\left(\sqrt{\#T \cdot n}\right) \times \mathcal{W}}_{\text{quantum walk}}$$

• **GCost**(QENUM) = #QW
$$\cdot O\left(\sqrt{T \cdot n}\right) \cdot \text{GCost}(\mathcal{W})$$

Enumeration as quantum walk:
$$\#QW \times \underbrace{O\left(\sqrt{\#T \cdot n}\right) \times \mathcal{W}}_{\text{quantum walk}}$$

• **GCost**(QENUM) = #QW ·
$$O\left(\sqrt{T \cdot n}\right) \cdot \text{GCost}(W)$$

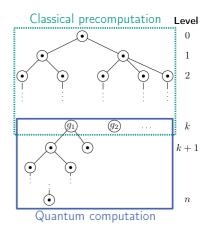
• **Depth**(QENUM) = $O\left(\sqrt{T \cdot n}\right) \cdot \text{Depth}(W)$

Contribution: Lower bound on quantum enumeration

Enumeration as quantum walk:
$$\#QW \times \underbrace{\mathcal{O}\left(\sqrt{\#\mathcal{T} \cdot n}\right) \times \mathcal{W}}_{\text{quantum walk}}$$

GCost(QENUM) = #QW
Depth(QENUM) =
$$O\left(\sqrt{\#\mathcal{T}\cdot n}\right) \cdot O\left(\sqrt{\#\mathcal{T}\cdot n}\right)$$
 · **GCost**(\mathcal{W})
Depth(\mathcal{W}) Asymptotic lower bounds
Heuristics, experiments
Constant/ polynomial factors

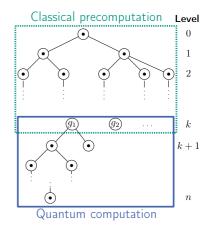
Contribution: Lower bound on quantum enumeration

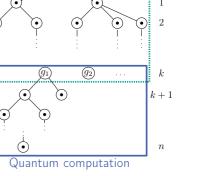

Enumeration as quantum walk:
$$\#QW \times \underbrace{O\left(\sqrt{\#T \cdot n}\right) \times \mathcal{W}}_{\text{quantum walk}}$$

GCost(QENUM) = #QW
Depth(QENUM) =
$$O\left(\sqrt{\#T \cdot n}\right) \cdot GCost(\mathcal{W})$$

Asymptotic lower bounds
Heuristics, experiments
Constant Polynomial factors

• Restriction: Depth \leq MAXDEPTH \in {2⁴⁰, 2⁶⁴, 2⁹⁶}: Adapt algorithm. \checkmark


Classical precomputation: up to level k


- Classical precomputation: up to level k
- QENUM for every node g_i on level k

- Classical precomputation: up to level k
- QENUM for every node g_i on level k
- Choose level k such that

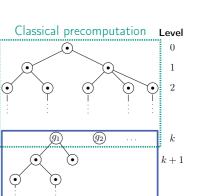
 $Depth(QENUM) \le MAXDEPTH$

... and also reducing overall GCost.

l evel

0

Classical precomputation


٠

- Classical precomputation: up to level k
- QENUM for every node g_i on level k
- Choose level k such that

 $Depth(QENUM) \le MAXDEPTH$

... and also reducing overall GCost.

$$\label{eq:classical} \textbf{Total Cost} = \underset{\text{precomputation}}{\overset{\text{Classical}}{\underset{\text{on level }k}{\overset{\text{for each } g_i}{\underset{\text{on level } k}{\overset{\text{global}}{\overset{\text{classical}}}{\overset{\text{classical}}}{\overset{\text{classical}}}{\overset{\text{classical}}}{\overset{\text{classical}}}{\overset{\text{classical}}}{\overset{\text{classical}}}{\overset{\text{classical}}}{\overset{\text{classical}}}{\overset{\text{classical}}}{\overset{\text{classical}}}{\overset{\text{classical}}}{\overset{\text{classical}}}{\overset{\text{classical}}}{\overset{\text{classical}}}{\overset{\text{classical}}}{\overset{\text{classical}}}{\overset{\text{classical}}}{\overset{\text{classical}}}{\overset{\text{classical}}}{\overset{s}}{\overset{s}}}{\overset{s}}}{\overset{s}}}$$

Quantum computation

n

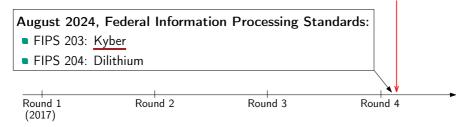
$\log(\mathsf{Lower \ bound}(\mathsf{Total \ Cost})) \stackrel{?}{\geq} \log(\mathsf{GCost}(\mathsf{``attacking \ AES''}))$

$\log(\mathsf{Lower} \ \mathsf{bound}(\mathsf{Total} \ \mathsf{Cost})) \stackrel{?}{\geq} \log(\mathsf{GCost}(\mathsf{``attacking} \ \mathsf{AES''}))$

MaxDepth	Kyber-512	AES-128 Kyber-768	AES-192 Kyber-1024	AES-256
2^{40} 2^{64}				
2^{94} 2^{96}				

$\log(\mathsf{Lower} \ \mathsf{bound}(\mathsf{Total} \ \mathsf{Cost})) \stackrel{?}{\geq} \log(\mathsf{GCost}(\mathsf{``attacking} \ \mathsf{AES''}))$

MaxDepth	Kyber-512 AE	S-128 Kyber-768	AES-192 Kyber-	1024 AES-256
2^{40}	94 < 117			
2^{64}	75 < 93			
2^{96}	75 < 83			
quantum enumeration	cheaper tha GCost("attack			
	This does not me Kyber-512 is in			

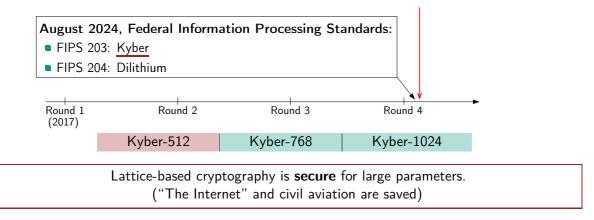

$\log(\mathsf{Lower \ bound}(\mathsf{Total \ Cost})) \stackrel{?}{\geq} \log(\mathsf{GCost}(\mathsf{``attacking \ AES''}))$

MaxDepth	Kyber-512 AES-128	Kyber-768 AES-192	Kyber-1024 AES-256
2^{40}	94 < 117	197 > 181	312 > 245
2^{64}	75 < 93	173 > 157	288 > 221
2^{96}	75 < 83	143 > 125	232 > 189
quantum	cheaper than	more exp	pensive than
enumeration	GCost("attacking AE		tacking AES")
	This does not mean tha Kyber-512 is insecure!	t	

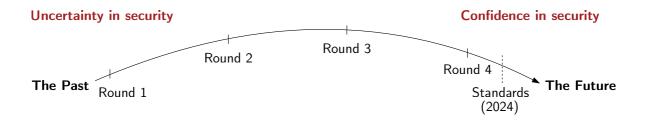
Impact on post-quantum standards


Lattice Enumeration in Limited Depth Advances in Cryptology – CRYPTO 2024

Impact on post-quantum standards


Lattice Enumeration in Limited Depth Advances in Cryptology – CRYPTO 2024

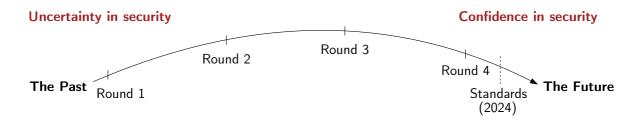
Impact on post-quantum standards



Lattice Enumeration in Limited Depth Advances in Cryptology – CRYPTO 2024


A bridge to the future

A bridge to the future

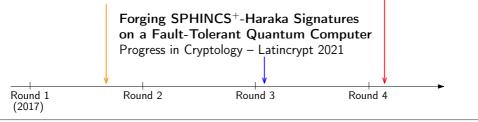


Research advances understanding and provides confidence in quantum-secure cryptography.

Costing Adversaries on Quantum-secure Cryptography

A bridge to the future

Research advances understanding and provides confidence in quantum-secure cryptography.


Uncertainty remains a challenge for new technologies, applications and protocols.

Costing Adversaries on Quantum-secure Cryptography

On to many more bridges

Exploiting Decryption Failures in Mersenne Number Cryptosystems PKC at AsiaCCS 2020 Lattice Enumeration in Limited Depth Advances in Cryptology – CRYPTO 2024

Making an Asymmetric PAKE Quantum-Annoying by Hiding Group Elements ESORICS 2023 Post-Quantum Ready Key Agreement for Aviation Communications in Cryptology 2024

My research advances cryptography to protect our digital future.

Bibliography I

- [1] Yoshinori Aono, Phong Q. Nguyen, and Yixin Shen. "Quantum Lattice Enumeration and Tweaking Discrete Pruning". In: 2018. DOI: 10.1007/978-3-030-03326-2_14.
- Shi Bai et al. "Concrete Analysis of Quantum Lattice Enumeration". English. In: Advances in Cryptology – ASIACRYPT 2023 - 29th International Conference on the Theory and Application of Cryptology and Information Security, Proceedings. Germany, 2023. ISBN: 9789819987269. DOI: 10.1007/978-981-99-8727-6_5.
- Robin M. Berger and Marcel Tiepelt. "On Forging SPHINCS⁺-Haraka Signatures on a Fault-Tolerant Quantum Computer". In: *Progress in Cryptology - LATINCRYPT 2021*. Vol. 12912. 2021. DOI: 10.1007/978-3-030-88238-9_3.
- [4] Nina Bindel, Xavier Bonnetain, Marcel Tiepelt, and Fernando Virdia. "Quantum Lattice Enumeration in Limited Depth". In: Advances in Cryptology – CRYPTO 2024. Cham, 2024. ISBN: 978-3-031-68391-6. DOI: 10.1007/978-3-031-68391-6_3.

Bibliography II

- [5] André Chailloux and Johanna Loyer. "Lattice Sieving via Quantum Random Walks". In: Advances in Cryptology – ASIACRYPT 2021. Cham, 2021. ISBN: 978-3-030-92068-5. DOI: 10.1007/978-3-030-92068-5_3.
- [6] Nicolas Gama, Phong Q. Nguyen, and Oded Regev. "Lattice Enumeration Using Extreme Pruning". In: 2010. DOI: 10.1007/978-3-642-13190-5_13.
- [7] Samuel Jaques, Michael Naehrig, Martin Roetteler, and Fernando Virdia. "Implementing Grover Oracles for Quantum Key Search on AES and LowMC". In: 2020. DOI: 10.1007/978-3-030-45724-2_10.
- [8] Hyunwoo Lee, Doowon Kim, and Yonghwi Kwon. "TLS 1.3 in Practice:How TLS 1.3 Contributes to the Internet". In: *Proceedings of the Web Conference 2021*. Ljubljana, Slovenia, 2021. ISBN: 9781450383127. DOI: 10.1145/3442381.3450057.

Bibliography III

- [9] Ashley Montanaro. "Quantum-Walk Speedup of Backtracking Algorithms". In: *Theory Comput.* 14.1 (2018). DOI: 10.4086/toc.2018.v014a015.
- [10] National Institute for Standards and Technology. Post-Quantum Cryptography Call for Proposals. 2017.
- [11] Peter Schwabe et al. *CRYSTALS-KYBER*. Tech. rep. National Institute of Standards and Technology, 2022.
- [12] Marcel Tiepelt and Jan-Pieter D'Anvers. "Exploiting Decryption Failures in Mersenne Number Cryptosystems". In: *Public-Key Cryptography Workshop, APKC at AsiaCCS 2020*. 2020. DOI: 10.1145/3384940.3388957.

Bibliography IV

- [13] Marcel Tiepelt, Edward Eaton, and Douglas Stebila. "Making an Asymmetric PAKE Quantum-Annoying by Hiding Group Elements". In: ESORICS 2023. Vol. 14344. 2023. DOI: 10.1007/978-3-031-50594-2_9.
- [14] Marcel Tiepelt, Christian Martin, and Nils Mäurer. "Post-Quantum Ready Key Agreement for Aviation". In: 1.1 (Apr. 9, 2024). ISSN: 3006-5496. DOI: 10.62056/aebn2isfg.